LATERAL AND VERTICAL
ORGANIC THIN FILM
TRANSISTORS

Research Thesis

Submitted in Partial Fulfilment of The
Requirements for the Degree of
Master of Science

Oded Globerman

Submitted to the Senate of the
Technion-Israel Institute of technology

Nisan 5766 HAIFA April 2006
The research thesis was done under the supervision of Prof. Nir Tessler in electrical engineering faculty in the Technion.

I wish to express my deepest respect to Prof. Nir Tessler, for his devoted supervision. I thank Prof. Nir Tessler for introducing me with the field of organic and polymer electronics.

I thank PhD. Roy Shenhar for his contribution to this thesis, by exposing the exciting field of block co-polymer, and for spending long hours at the organic lab.

I wish to thank Vlad Medevdev, Yair Gannot, Dr. Olga Solomeshch and Alexey Razin for the great help in the organic lab.

I thank my colleagues, Noam Rapaport, Yhoram Bar, Michal Soreni and Evgeni Preezant for the assistance through this thesis.

Neta, my wonderful wife, I wish to thank you for your love and support in the last four years. I wish to thank my dear parents, Yossef and Rayia, my sister and brother, Nechama and Israel, and all the family for their love and support.
Contents

List of figures .. 6
List of tables .. 9
Abstract ... 1
List of Symbols ... 2

1. INTRODUCTION ... 5
1.1 Organic Thin Film Transistor OTFT .. 5
1.2 C_{60} Buckminster-Fullerene ... 8
1.3 Organization of Thesis .. 10

2. ELECTRONIC STRUCTURE OF ORGANIC MATERIALS .. 11
2.1 Introduction .. 11
2.2 SP^2 bonding of Carbon atoms .. 12
2.3 2D Carbon Chain (Benzene Ring) ... 14
2.4 Small Organic molecule (C_{60}) ... 16
2.5 Molecular vibrations ... 17
2.6 Electronics excited states ... 18
2.7 Charge transfer in small organic molecular ... 20
 2.7.1 Intra site transfer (inside the organic molecular) .. 20
 2.7.2 Inter site transfer (between organic molecules) .. 20
2.8 Metal Organic Semiconductor Contact ... 23
 2.8.1 Work function Model .. 23
 2.8.2 Ohmic Contact ... 27
 2.8.3 Schottky Contact ... 29

3. LATERAL THIN FILM TRANSISTOR .. 35
3.1 introductions ... 35
3.2 Lateral OTFT structure .. 36
3.3 C_{60} OTFT – literature survey ... 38
3.4 Metal Oxide Semiconductor Capacitor ... 41
List of figures

Figure 1: Organic and polymer electronics product ... 5
Figure 2: Mobility of N-type and P-type organic and polymers TFT devices [69] 6
Figure 3: Structure of C_{60} molecule with 60 carbon atoms .. 8
Figure 4: Single C_{60} molecule Transistor reported by H. Park et al. [41] 9
Figure 5: Two carbon atoms with SP^2 orbital ... 12
Figure 6: Coupling of degenerate SP^2 ... 13
Figure 7: Ring of six carbon atoms creating the benzene ring ... 14
Figure 8: Benzene ring energetically-different orbital .. 15
Figure 9: Structure of C_{60} football molecule with Double and single bond. [45] 16
Figure 10: Absorption process between the electronic ground state and first excited state 18
Figure 11: Absorption and emission spectrum of two electronic state 19
Figure 12: Stable and unstabl Pyracylene C_{60} unit [49] .. 20
Figure 13: localized energy levels site [54] .. 21
Figure 14: Hopping probability versus energy changes between two tied sites [54] 22
Figure 15: Partly empty valence band and partly full conductive band 23
Figure 16: Fermi-Dirac distribution function .. 24
Figure 17: Fermi-Dirac distribution function [54] .. 25
Figure 18: Intrinsic Semiconductor energy levels ... 25
Figure 19: Doped semiconductor energy levels ... 26
Figure 20: Metal, semiconductor and insulator energy levels and work function 26
Figure 21: Ohmic contact between Low work function metal, and organic LUMO level 28
Figure 22: Schottky contact phenomenon .. 29
Figure 23: lowering of the contact barrier [57] ... 30
Figure 24: Schottky barrier lowering $\Delta \phi$ by applying reverse electric field [57] 33
Figure 25: Top gate lateral FET [56] .. 36
Figure 26: Bottom gate coplanar OTFT ... 36
Figure 27: Bottom gate staggered OTFT ... 37
Figure 28: Two types of synthesis soluble C_{60} materials for OTFT devices. [69] [68] 39
Figure 29: Channel negative charges induced by the gate potential 41
Figure 30: Metal, insulator and semiconductor energy levels before physical contact [56] 42
Figure 31: Fermi level alignment and the energy levels bending of the semiconductor at equilibrium state 42
Lateral And Vertical Organic Thin Film Transistors

Figure 32: Flat band conditions

Figure 33: Depletion mode

Figure 34: Inversion mode

Figure 35: Accumulation mode

Figure 36: Conductance characteristic for thin film transistor [56]

Figure 37: Equivalent circuit for lateral staggered OTFT device

Figure 38: Different view of figure 37

Figure 39: DH4T OTFT [72]

Figure 40: Channel resistance and total resistance for staggered Pentacene TFT [73]

Figure 41: Calculated potential distribution at the channel interface [97]

Figure 42: Threshold voltage increase with Pentacene thickness [74]

Figure 43: Trap’s state located at the insulator-semiconductor interface filled by Fermi level rises [77]

Figure 44: Schematic of the evaporation chamber

Figure 45: Picture of doped Si/SiO2 wafer after C60 thermal evaporation

Figure 46: Picture of lateral C60 OTFT

Figure 47: OTFT measurements setup

Figure 48: Scanning probe micrograph (SPM)

Figure 49: Conductance characteristic for C60 OTFT

Figure 50: Logarithmic linear conductance characteristic for C60 OTFT

Figure 51: Transconductance characteristic for C60 OTFT

Figure 52: Logarithmic linear transconductance characteristic for C60 OTFT

Figure 53: Contact, channel and total transistor resistance for constant drain-source voltage V_{gs}=2[V]

Figure 54: Contact, channel and total transistor resistance for constant gate-source voltage V_{gs}=12[V]

Figure 55: Fitting equation 4.4, 3.25 to part of the logarithmic linear conductance characteristic

Figure 56: Threshold voltage for C60 OTFT

Figure 57: Effective mobility factor dependence on drain-source voltage for C60 OTFT

Figure 58: Effective saturation mobility value dependence on gate-source voltage

Figure 59: Effective linear mobility value dependence on gate-source voltage

Figure 60: Work function model of metal contacts and C60 semiconductor before real contact

Figure 61: Conductance characteristic for C60 OTFT with silicon dioxide and silver, copper or gold contacts

Figure 62: Comparison between silver, copper or gold contact C60 OTFT

Figure 63: Threshold voltage for C60 OTFT with silicon dioxide insulator and silver, copper or gold contacts

Figure 64: Effective mobility factor dependence on gate-source voltage for silver, copper or gold contacts

Figure 65: Picture of lateral C60 OTFT

Figure 66: Picture of doped Si/SiO2 wafer after C60 thermal evaporation

Figure 67: Picture of lateral C60 OTFT
Lateral And Vertical Organic Thin Film Transistors

Figure 65: SPM scan for Si/SiO$_2$/block-copolymer/C$_{60}$ (~10[nm]) ... 87
Figure 66: SPM scan for Si/SiO$_2$/C$_{60}$ (~10[nm]) ... 87
Figure 67: Fabrication steps for the self-aligned vertical channel polymer FET [30] .. 93
Figure 68: Conductance characteristics for F8T2 self-aligned vertical channel polymer FET [30] 94
Figure 69: Conductance characteristics for P3HT self-aligned vertical channel polymer FET [30] 94
Figure 70: Parashkov Vertical-channel fabrication process [86] .. 95
Figure 71: Parashkov Vertical-channel Conductance and transconductance characteristics [86] 95
Figure 72: Kudo et. al. Static induction transistor (SIT) structure [87] ... 96
Figure 73: SIT energy band diagram [32] .. 97
Figure 74: SIT conductance characteristics [32] ... 97
Figure 75: Nakayama et. al. charge injection controlled transistor (CICT) structure [90] 98
Figure 76: CICT collector current and current amplification factor (hFE) [90] .. 98
Figure 77: Ma et. al. gate-source-drain vertical organic field effect transistor (VOFET) [33] 99
Figure 78: VOFET band diagram [33] .. 99
Figure 79: VOFET conductance characteristicse [33] .. 100
Figure 80: OLED driven by the VOFET device [33] .. 100
Figure 81: Chemical structure for donor-acceptor diblock copolymer PPV-b-P(S-stat-C$_{60}$MS) [94] 101
Figure 82: Structural 3D pattern of block copolymer [100] ... 102
Figure 83: Block copolymer boundary conditions influence by film thickness [102] .. 103
Figure 84: PS-b-PMMA of the proposed novel patterned source vertical OTFT (PS-VOTFT) 104
Figure 85: PS-b-PMMA Block copolymer transmission electron microscopy (TEM) [103] 106
Figure 86: Metal nano particles formation on PS-b-PMMA at different stages [103] 107
Figure 87: Work function model for separated silver and C$_{60}$... 108
Figure 88: Work function model after thermal equilibrium .. 109
Figure 89: Work function model after applying external voltage ... 109
Figure 90: Work function model after applying gate voltage ... 110
Figure 91: PS-VOTFT Poisson’s equation simulation $V_{gs}=0[V]$ and $V_{ds}=5[V]$.. 111
Figure 92: Potential and electric field across the source layer when $V_{g}=0[V]$... 112
Figure 93: PS-VOTFT Poisson’s equation simulation with $V_{gs}=5[V]$ and $V_{ds}=5[V]$ 112
Figure 94: Potential and electric field across the source layer when $V_{g}=5[V]$... 113
Figure 95: PS-VOTFT Poisson’s equation simulation comparison between $V_{gs}=0[V]$ and $V_{gs}=5[V]$ 113
Figure 96: PS-VOTFT Equivalent circuit .. 114
Figure 97: A scanning probe micrograph imaging of PS-b-PMMA block copolymer template 118
List of tables

Table 1: Threshold voltage and saturated effective mobility values for silver contacts SiO$_2$/BCP insulator transistor……………………………………………………………….79

Table 2: Threshold voltage and saturated effective mobility values for silver, copper and gold contacts SiO$_2$ insulator transistor. ………………………………………………………………………….85

Table 3: Summary of lateral transistors shown in this thesis……………………………………………………………89

Table 4: m_1 and m_2 Coefficient from figure 103, according to equation 6.4………………………………………….127
Abstract

Organic and polymer electronics have been the subject of intense research for the past 30 years, after the discovery of Heeger, MacDiarmid and Shirakawa, that polyacetylene can be rendered conductive by reaction with bromine or iodine vapours. At the year 2000 when Heeger, MacDiarmid and Shirakawa were granted the Nobel prize in Chemistry for foundering of the “conjugated polymer science” few organic electronics products have emerged in the market, first as organic or polymer display (OLED and PLED) and recently as organic or polymer transistors (OTFT or PTFT). Future applications promise large area flexible organic flat display, derived by active matrix organic transistors (AM-OTFT). To realize this idea there is a need to boost the performance of today organic transistor by few factors.

This thesis was aimed to research the effect of structural and materials on the performance of OTFT. We chose to use C_{60} “Bucky Ball” as the active semiconductor material throughout the research. We first inspected the effect of using different contacts and insulator material upon the performance of “standard “ lateral OTFT structure.

The second part of the thesis, deals with novel vertical transistor structure, which target to increase the device performance. In order to implement the proposed vertical structure we needed to be exposed to the new science of nano scale patterning based on block co-polymer (BCP) materials. This technology enables us to assemble and demonstrate the PS-VOTFT device.
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-Si:H</td>
<td>hydrogenated amorphous Silicon</td>
</tr>
<tr>
<td>AM-TFT</td>
<td>Active Matrix TFT</td>
</tr>
<tr>
<td>BCP</td>
<td>Block co-polymer</td>
</tr>
<tr>
<td>BOC</td>
<td>Bottom contact</td>
</tr>
<tr>
<td>CICT</td>
<td>Charge injection controlled transistor</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>CV</td>
<td>Capacitance voltage</td>
</tr>
<tr>
<td>C_{ins}</td>
<td>Insulator capacitance</td>
</tr>
<tr>
<td>DOS</td>
<td>Density of states</td>
</tr>
<tr>
<td>E</td>
<td>Electric field</td>
</tr>
<tr>
<td>E_C</td>
<td>Conductance band edge</td>
</tr>
<tr>
<td>E_F</td>
<td>Fermi level</td>
</tr>
<tr>
<td>E_V</td>
<td>Valence band edge</td>
</tr>
<tr>
<td>E_g</td>
<td>Band gap Energy</td>
</tr>
<tr>
<td>$f(\varepsilon,\eta), f(\varepsilon)$</td>
<td>Distribution function</td>
</tr>
<tr>
<td>$f(E)$</td>
<td>probability to find a charge at energy E</td>
</tr>
<tr>
<td>FET</td>
<td>Field effect transistor</td>
</tr>
<tr>
<td>$g(\varepsilon)$</td>
<td>Density of states</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest Occupied Molecular Orbital</td>
</tr>
<tr>
<td>I_{ds}</td>
<td>The drain source current</td>
</tr>
<tr>
<td>K</td>
<td>Boltzmann coefficient</td>
</tr>
<tr>
<td>KPFM</td>
<td>Kelvin probe force microscopy</td>
</tr>
<tr>
<td>L_{ch}</td>
<td>Channel length</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LIF</td>
<td>Lithium fluoride</td>
</tr>
<tr>
<td>L_{eff}</td>
<td>The effective channel length</td>
</tr>
<tr>
<td>LUMO</td>
<td>Lowest Unoccupied Molecular Orbital</td>
</tr>
<tr>
<td>MBT</td>
<td>Metal base transistor</td>
</tr>
<tr>
<td>MEH-PPV</td>
<td>Polymethoxy-Ethyl-Hexyloxy-Phenylen-Vinylene</td>
</tr>
</tbody>
</table>
Symbol Meaning

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIS</td>
<td>Metal Insulator Semiconductor</td>
</tr>
<tr>
<td>MOS</td>
<td>Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>(n(E))</td>
<td>charge density</td>
</tr>
<tr>
<td>OLED</td>
<td>Organic Light Emitting Diode</td>
</tr>
<tr>
<td>OTFT</td>
<td>Organic Thin Film Transistor</td>
</tr>
<tr>
<td>P</td>
<td>Probability vector</td>
</tr>
<tr>
<td>(p)</td>
<td>Charge concentration</td>
</tr>
<tr>
<td>(p(E))</td>
<td>charge density</td>
</tr>
<tr>
<td>PS</td>
<td>Poly-Styrene</td>
</tr>
<tr>
<td>PMMA</td>
<td>Poly-Methyl-Meth-Acrylate</td>
</tr>
<tr>
<td>PT</td>
<td>Poly-Thiophene</td>
</tr>
<tr>
<td>PFET</td>
<td>Polymer Field Effect Transistor</td>
</tr>
<tr>
<td>PS-VOTFT</td>
<td>Pattern Source Vertical OTFT</td>
</tr>
<tr>
<td>PS-b-PMMA</td>
<td>Polystyrene-block-Polymethylmethacrylate</td>
</tr>
<tr>
<td>(Q)</td>
<td>Total charge in the channel</td>
</tr>
<tr>
<td>(q)</td>
<td>Charge carrier charge, electron charge</td>
</tr>
<tr>
<td>(R_{ij})</td>
<td>State to state distance</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency identification Tag</td>
</tr>
<tr>
<td>(R_{tot})</td>
<td>The transistor total resistance</td>
</tr>
<tr>
<td>(R_{ch})</td>
<td>The channel resistance</td>
</tr>
<tr>
<td>(R_{con})</td>
<td>The contact resistance</td>
</tr>
<tr>
<td>SIT</td>
<td>Static Induction Transistor</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>(T_g)</td>
<td>Glass transition temperature</td>
</tr>
<tr>
<td>(t_{ox})</td>
<td>Oxide width</td>
</tr>
<tr>
<td>(t_{ins})</td>
<td>The insulator layer thickness</td>
</tr>
<tr>
<td>TFT</td>
<td>Thin Film Transistor</td>
</tr>
<tr>
<td>TOC</td>
<td>Top Contact</td>
</tr>
<tr>
<td>TOF</td>
<td>Time Of Flight</td>
</tr>
<tr>
<td>UHV</td>
<td>Ultra High Vacuum</td>
</tr>
<tr>
<td>(V_T)</td>
<td>Threshold Voltage</td>
</tr>
</tbody>
</table>
Symbol and Meaning

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOTFT</td>
<td>Vertical OTFT</td>
</tr>
<tr>
<td>V_{gs}</td>
<td>The gate to source potential</td>
</tr>
<tr>
<td>V_{ds}</td>
<td>The drain to source potential</td>
</tr>
<tr>
<td>W_{ch}</td>
<td>Channel width</td>
</tr>
<tr>
<td>ε</td>
<td>Energy, dielectric constant</td>
</tr>
<tr>
<td>ε_{ox}</td>
<td>Permittivity of oxide</td>
</tr>
<tr>
<td>ε_{i}</td>
<td>Energy of state i</td>
</tr>
<tr>
<td>ε_{s}</td>
<td>Semiconductor permittivity</td>
</tr>
<tr>
<td>ε_{o}</td>
<td>The free space permittivity</td>
</tr>
<tr>
<td>ε_{ins}</td>
<td>The insulator relative permittivity</td>
</tr>
<tr>
<td>ε_{oi}</td>
<td>Permittivity of organic insulator</td>
</tr>
<tr>
<td>σ</td>
<td>The channel conductivity, Carbon conjugated orbital</td>
</tr>
<tr>
<td>μ</td>
<td>Mobility</td>
</tr>
<tr>
<td>π</td>
<td>Carbon conjugated orbital</td>
</tr>
<tr>
<td>Φ_{m}</td>
<td>Metal work function</td>
</tr>
<tr>
<td>ϕ_{F}</td>
<td>The potential difference between the intrinsic Fermi level and the doped Fermi level</td>
</tr>
<tr>
<td>ν_{ij}</td>
<td>Transfer rate</td>
</tr>
<tr>
<td>χ</td>
<td>Electron affinity</td>
</tr>
<tr>
<td>χ_{S}</td>
<td>The semiconductor electron affinity</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1 Organic Thin Film Transistor OTFT

Organic thin film transistors (OTFT) have gained high interest in the last years due to their potential applications in small as well as in large area electronics. Their less complex processing procedures, utilizing low temperature deposition and solution processing methods, hold promise for cheaper, lightweight and flexible products.

The promising applications for OTFT include active matrix drivers for large area display [1-4], large area sensor matrix [5-8], active matrix drivers for electronics paper [9-12] and basic element for logic circuit in Radio Frequency Identification (RFID) tags [13-16].

Despite the fact that OTFT can not compete with inorganic single crystalline TFT performance, OTFT devices can reach mobility levels of ~1 [cm²/Vs] and on/off ratio in the range of 10⁶. This performance are similar to those of hydrogenated amorphous Silicon (a-Si:H) based TFT devices that are used commercially as drivers for liquid-crystal display [17].
Since the first report on OTFT in 1986 [18], which was based on Poly-thiophene (PT) polymer with mobility of 10^{-5} [cm2/Vs], great progress has been made in synthesis of new organic semiconductors and insulators materials, improving manufacturing techniques and in development of new TFT structures.

While charge carriers in inorganic semiconductor move in wide delocalized bands and have high mobility, in disordered organic semiconductors phonon assisted tunnelling (hopping) between localized states gives rise to the low mobility charge carriers transport.

OTFT, with Pentacene P-type organic semiconductor material, have produced the highest known performance among the lateral (horizontal) OTFT with mobility up to 1.5 [cm2/Vs] [19]. Today, many research groups continue to improve the Pentacene OTFT by using different insulator materials [20-24] encapsulation methods [26], or by doped the Pentacene film [27-28].
The microscopic mobility upper limits of organic molecular crystal tested by time of flight experiments at room temperature [29] is between 1 to 10 [cm²/Vs], impose by the weak intermolecular force between neighbouring molecules. There are also large efforts in pushing disordered polymers semiconductors, which are inherently more stable [25], toward the high mobility regime, but values higher then 0.1 seem to be out of reach at the moment.

Reducing the OTFT micron size channel, which contains large number of molecules, to Nano size channel, with fewer molecules between the TFT contacts, may improve the OTFT performance. To reach this target few vertical OTFT structures were designed with channel length in the nanometre dimension. Among these structures are V-shape channel OTFT [30], SIT OTFT [31-32] and VOTFT structure proposed by Liping Ma and Yang Yang [33].

The new VOTFT structure described in [33] provides very short channel length and extremely large cross sectional area between the source and the drain contacts, allowing low working voltage (gate voltage in the range of few volts) and high current output (In the range of milliamp for 0.25 mm² device area). To reach this superior performance the VOTFT requires unique structural properties, like very thin and rough source electrode and high capacitance for the bottom cell capacitor, which in our opinion is significantly lowering the VOTFT manufacturing yield.

In this thesis we are using the C₆₀ fullerene as an active organic semiconductor material for lateral OTFT and for novel pattern source vertical OTFT (PS-VOTFT) structures. The PS-VOTFT includes block co-polymer (BCP) as insulator material and as patterning layer for the source and drain electrode (more detail in chapter 5)
In 1985 during a research to understand the absorption spectra of interstellar dust, which was suspected to be related to some kind of long-chained carbon molecules, R.E. Smalley, H.W. Kroto, J.R. Heath, S.C. O’Brien and R.F. Carl reported [34] the discovery of a new carbon structure. The new structure, a closed hollow cage of 60 carbon atoms arranged in SP² hybrid state (Figure 3 left), become the third known carbon form after the hard, transparent, insulating diamond form and the soft, black, conductive graphite form.

This discovery, which was followed by winning of the 1996 Nobel Prize, was given the name “Buckminster-fullerene” after the architect of the Disney-world dome in Florida design, using the same geometrical structure (Figure 3 right).

In general, the name “Fullerene” is now used to describe all close cages forms of pure carbon, having from 20 to 1,000,000 and more (nanotubes) carbon atoms, which is the largest stable molecule, made of a single element.

Fullerene family in general and C₆₀ in particular, have remarkable interesting chemical and physical properties, Ranging from superconductivity [35-38] to ferromagnetism [39]. This material shows promising future application in solar cell devices. Currently Organic solar cells with C₆₀ are the most efficient Organic solar cells.
known today, with power conversion efficiency of 4.25% [40]. In the last decade, few research groups have published articles on C\textsubscript{60} OTFT with mobility up to 0.5 [cm2/Vs]. More details on these devices appear in chapter 3. C\textsubscript{60} molecule was even used to create the smallest transistor ever built reported by H. Park et al. [41]. This single C\textsubscript{60} molecule transistor allows only one electron at a time to hop in and out from the molecule (Figure 4).

Figure 4: single C\textsubscript{60} molecule Transistor reported by H. Park et al. [41]
1.3 Organization of Thesis

Chapter 2 gives general background for SP² organic conductive materials, with emphasis on fullerene C₆₀, which we choose as the active semiconductor materials used throughout this thesis. In addition it deals with two metal semiconductor contact types, Ohmic and Schottky contacts.

Chapter 3 gives general background for organic thin film transistor (OTFT). This chapter focuses on C₆₀ OTFT, and includes literature survey for published C₆₀ OTFT. The basic TFT principles are discussed and the definitions for threshold voltage, trap effect and effective mobility coefficient are explained.

Chapter 4 shows fabrication process of lateral C₆₀ organic TFT. We characterize the current-voltage response, the threshold voltage, and the effective mobility value. In the second part of the chapter, we characterize the performance of different contact types OTFT. We use a work function model to explain the performance variation.

Chapter 5 discusses the benefit of vertical OTFT compared to lateral OTFT and relevant published contributions by other groups are presented. In the second part of the chapter, we deal with the Basic theory for the PS-OVTFT operation, and discuss the technology that utilize block co-polymer.

Chapter 6 discusses the fabrication process of vertical PS-OTFT. It deals with the nano patterning of the source electrode and the deposited steps of this device. It shows the characterize current-voltage measurements. In this chapter we are demonstrating the idea of PS-OVTFT, and the effect of the gate electric field on the drain-source current.

Chapter 7 Summary and future work.
2. ELECTRONIC STRUCTURE OF ORGANIC MATERIALS

2.1 Introduction

This chapter gives general background for SP² organic conductive materials, with emphasis on Buckminster-fullerene (C₆₀), which we choose as the active semiconductor material used during this thesis. Two types of metal-semiconductor contacts, Ohmic and Schottky, are discussed.
2.2 SP2 bonding of Carbon atom

Carbon atom with six electrons has electronic configuration of 1S22S22P2. Carbon can bond with other atoms via hybridization of the outer four 2S and 2P state electrons. In conjugated materials SP2 hybridization between neighbouring atoms is formed, where 2S, 2Px and 2Py orbital are combined in trigonal planar formation. This strong covalent bond is called a Sigma (σ) bond, which forms the backbone of the chain. Electrons in this orbital are highly localized between the atoms. The energy differences between the low energy (σ) state and the excited (σ^*) state is quite large and well beyond the visible spectral range. Thus the electronic properties associated with this bond are that of an insulating material.

The fourth orbital (2Pz) does not take part in this hybridization and is perpendicular to the σ bond. Neighbouring atoms with 2Pz orbital form together molecular PAI (π) orbital. Electrons in this bond are less localized to the carbon atoms and more mobile (figure 5).

![Figure 5: Two carbon atoms with SP2 orbital, σ and π bonds. The σ bonds appear in the x-y plane while π bond appears in Z plane.](image)

The coupling of two degenerate 2Pz orbitals generates two new energetically-different orbitals: bonding (π- or π) which is lower in energy compare to original 2Pz orbital, and anti-bonding (π^+ or π^*) which is higher in energy compared to the isolated 2Pz orbital (figure 6). Because of the lower energy of the bonding (π-) orbital both of the
2Pz electrons will occupy this orbital, leaving the anti bonding (π^+) orbital empty of electrons. This can be seen in figure 6.

![Figure 6: coupling of degenerate SP^2 and Pz orbital generates new energetically-different orbital σ^-, σ^+, π^- and π^+. The electrons occupy the lower energy bonding orbital while leaving the high energy anti bonding orbital free of charges.](image)

In this case the bonding orbital is the highest energy occupied molecular orbital (HOMO), while the anti bonding orbital is the lowest unoccupied molecular orbital (LUMO). In addition, the energy difference between the π - orbital and π^+ orbital is much smaller compared to the energy difference of σ coupling. This band gap has absorption in the visible range and the delocalized nature of the π orbital leads to semiconductor properties.
2.3 2D Carbon Chain (Benzene Ring)

Typically when carbon atoms bond to form small molecules a benzene ring is formed with six atoms hybrid each other via 120° σ bond (Figure 7).

![Figure 7: Ring of six carbon atoms creating the benzene ring. The σ (blue grey) and π bonds (yellow) are shown.](image)

Benzene ring (6 carbon atoms) includes 18 electrons combined to form the strong covalent σ bond. While the remaining six 2Pz electrons combine to form new twelve orbital with six non-degenerated energy levels. Three of the energy levels placed below the degenerated 2Pz energy level, and the other three are placed above (Figure 8). The three lower energy levels are occupied by the six 2Pz electrons, which refer as HOMO (π or π^- bond) levels. On the other side, the other three higher energy levels stay unoccupied of electrons. These unoccupied levels are referred as LUMO (π^* or π^+ bond) levels. Due to the close coupling of the π bond, the π electrons are delocalized across the ring with high mobility. These electrons contribute to the electric properties of the material.
The terms for organic HOMO and LUMO are analogous to valence and conductive bands used for inorganic solid state physics. According to this analogy electrons or negative charges are mobile across the LUMO level, while holes or positive charges are mobile across the HUMO level. Upper left side of figure 8 shows benzene ring format with single and double bonds. Each edge in the ring defines by carbon atom with hydrogen atom. Single band (C-C) representing only σ bond, while double bond (C=C) representing σ bond with π bond.
2.4 Small Organic molecule (C\textsubscript{60})

C\textsubscript{60} molecule includes 60 carbon atoms arranged as 3D football structure with 90 edges, 12 pentagons, and 20 hexagons. Each carbon atom has two single bonds (C - C) along adjacent sides of a pentagon and one double bond (C = C) between two adjacent hexagons [42] (Figure 9). Two different C-C bonds lengths exist in C\textsubscript{60}, 1.4 [Å] and 1.46 [Å], the length difference cause the \(\pi \) electrons not to be delocalized evenly over all bonds [43]. This distortion, called “Peierls distortion”, corresponding to long-short-long-short alternation bonds of high and low \(\pi \) electron density, reduce the lattice symmetric, and cause an appearance of an energy gap at the Fermi level.

Each C\textsubscript{60} atom, arranged in SP2 form, has three \(\sigma \) bonds (C – C) to its neighbours, using up to total of 180 electrons. As mentioned before, these \(\sigma \) bonds define the structure of the molecule and have energy levels well below the Fermi level [44]. These bonds do not influence the electric properties. The remaining 60 electrons are distributed across the C\textsubscript{60} molecule on the \(\pi \) bonds orbital. Not like 2D SP\textsubscript{2} structure, the \(\pi \) electrons in C\textsubscript{60} molecule tend to spend less time inside the ball compare to the outside of the C\textsubscript{60} ball. In addition, because of the non uniform \(\sigma \) bonds length, the \(\pi \) electrons are not truly “delocalized” around the six carbon members of the hexagons ring (like in benzene ring), but they are distributed over 30 sites of electrons orbits that stick out of the C\textsubscript{60} molecule.

![Figure 9: Left: 60 carbon atoms arrangement allowing the structure of C\textsubscript{60} football molecule. Double and single bond are shown, Right: Huckel \(\pi \) molecular orbital. The lower 30 orbital are filled with electrons while the upper 30 orbital are empty [45].](image)
The order of the π bonds energy level based on Huckel model showed in figure 9 [45]. This model includes 60 orbital with different levels of degeneracy energy. In which, 30 lower orbital are filled with 60 π electrons. In this case, Hu level is completely filled by the 10 highest energy electrons, becoming the highest occupied molecular orbit (HOMO), while the next energy level, t_{1u}, become the lowest unoccupied molecular orbit (LUMO). This molecular orbit can be partially or fully filled by injecting electron to the C$_{60}$ molecule. The HOMO-LUMO band gap is about 2eV to 2.5eV, well inside the visible spectrum and leads to semiconductor properties.

Kelvin probe measurements (KPM) [46, 47] done on C$_{60}$ film showed that the electron affinity (the energy needed to pull electron from LUMO level to the vacuum level) was measured as 3.57 [eV], while the ionization threshold energy (the energy needed to pull electron from HOMO level to the vacuum level) was measured as 6.17 [eV]. Leading to a HOMO-LUMO band gap of 2.6 [eV].

2.5 Molecular vibrations

Each atom in the C$_{60}$ molecule can have three vibration modes, leading to a total of 60*3-6=174 intra-molecular vibration mode (-6 sit for the inter-molecule six vibration modes, when all the molecule’s atoms move at the same direction and phase, three translational and three rotational). Because of the C$_{60}$ symmetry a degenerate energy appears for the intra-molecular vibration. These vibration energies are between 0.03[eV] to 0.2[eV]. In addition, the C$_{60}$ molecule vibrates and rotates freely. These inter-molecular motion leads to vibration excitations (Phonons). The phonon energy are up to ~0.007[eV] [48].This vibration modes excitation are lower by two orders of magnitude in energy compare to the electron excitation.
2.6 Electronics excited states

While Molecular vibration are excited at the thermal energy spectrum (about 0.007[eV] to 0.2[eV] at room temperature), electronic excitation involve higher energy, mostly at the visible energy spectrum (about 2[eV] to 2.5[eV]). The electronic excitation could be created by photons or by charge injection. Figure 10 shows two discrete electronic levels (ground state and excited state) with supplementary vibrational energy levels at each electronic level.

![Figure 10: Absorption process between the electronic ground state and first excited state. Each electric state is being assembled by few vibronic states.](image)

When a molecule is excited with photons, fast electronic transitions (~10^{15} [Sec]) occur from the ground state to the excited state. This represented by the absorption process (figure 11 left side). At this point, the system relaxes towards its lowest vibronic excited state where thermal energy, in the form of molecular vibration or rotation, is released. From this excited state the system can move to one of the vibronic excited states of the electronic ground state. This is represented by the emission process (figure 11 right side).
Figure 11: Absorption and emission spectrum of two electronic state S_0, S_1. The internal vibronic states influence on the absorption and emission spectrum, leading to four Absorption energy peaks, from the lower vibronic level of S_0 to four different energy vibronic states of the electron excited state. A mirror image appears for the emission spectrum.

Additional relaxation may take place in case that the electronic transition did not occur to the vibronic ground state. This, again, will happen by releasing molecular vibration or rotation.
2.7 Charge transfer in small organic molecular

2.7.1 Intra site transfer (inside the organic molecular)

The fullerenes are strongly electron attracting molecule. They can attract up to six electrons for completely filling the lower unoccupied molecular orbital (LUMO) t_{1u} (figure 9). C_{60} molecule is built from six Pyracylene units [49, 50], each unit include six hexagonal rings and two pentagonal rings. In stable state each Pyracylene unit’s hexagonal rings contain double bonds, while the pentagonal rings holds only single bonds (figure 12 left side). In this stable form all the HOMO energy levels are filled. By adding an electron to the Pyracylene unit an aromatic pentagonal ring is formed, leaving five π unpaired states around the Pyracylene unit, as shown in figure 12 (right side). This state describes filling of one LUMO orbital. The Pyracylene unit return to stable form when it releases the additional electron.

![Figure 12: Stable Pyracylene unit with single bonds pentagonal rings and single-double bonds hexagonal rings, Right: addition of an electron give an unstable aromatic pentagonal ring, the five dots represent unpaired electrons [49].](image)

2.7.2 Inter site transfer (between organic molecules)

Phonons assisted tunnelling (hopping) model defines the inter site charge transfer for organic molecules. According to this model each molecule can be represented by localized states energy. In this case charge may be trapped in these localized states.
The amorphous structure nature of organic solids affects the hopping transport [51, 52] mechanism. The charge hopping can be facilitated by molecular thermal vibration, which changes the relative inter site energy level and assist “trapped” charge to hop from one localized site to the next localized site.

By applying external electric field across the organic solid the relative localized energy levels are being shifted. This effect lowers the activation energy (energy difference between sites) according to the electric field vector, and raises the probability of charge hopping from traps sites along the field vector. Figure 13 shows the relative localized inter site energy level for zero and none zero electric field.

![Figure 13: localized energy levels site for, Left: zero fields, Right: positive field [54].](image)

Miller and Abrahams proposed hopping model [53] based on single phonon jump rate (or an effective phonon frequency). In this model the hopping rate depends on the vibration phonon rate, the tunnelling probability, and the probability of the occupation level:

\[
\nu_{ji} = v_0 \exp(-2\gamma R_{ij}) \exp\left(-\frac{E_i - E_j}{k_B T}\right) \quad \text{for } E_i < E_j
\]

(2.1)

And:

\[
\nu_{ji} = v_0 \exp(-2\gamma R_{ij}) \quad \text{for } E_i > E_j
\]

(2.2)

Where: \(v_0\) is the vibration phonon rate

\(\exp(-2\gamma R_{ij})\) is the tunnelling probability between two localized energy states

i and j
Lateral And Vertical Organic Thin Film Transistors

\[R_{ij} \] is the distance between the two sites

\[\gamma^{-1} \] quantifies the wave function overlap between the sites

\[
\exp\left(-\frac{E_i - E_j}{k_BT}\right)
\]

is the occupation probability of energy difference \(E_i - E_j \)

Left side of figure 14 describes the Miller Abrahams hopping probability (Frequency) [54]. This figure shows how energy differences \(E_{ij} \) effects hoping probability (with constant vibration phonon rate, wave function, distance and temperature). It is easy to see, that for situation where the initial energy is higher compare to the final energy (according to formula 2.2) the hopping probability is equal to 1.

![Hopping probability versus energy changes between two tied sites](image)

Figure 14: Hopping probability versus energy changes between two tied sites [54]; Left: According to Miller-Abrahams theory, Right: According to Marcus-Mott theory.

There is another form of hopping rate theory which account for the molecular electron-phonon coupling (Marcus-Mott theory). In this model the transfer of charge from one molecule to another will occur only when the energy levels are almost equal, which lead to maximum hopping probability when the energy difference between two neighbours sites is close to zero energy. Marcus-Mott theory probability versus energy change appears in the right side of figure 14.
2.8 Metal Organic Semiconductor Contact

2.8.1 Work function Model

The energy band diagram model was adopted from the inorganic semiconductors. The correlation is done by comparing the organic LUMO level with the inorganic conduction band, and comparing the organic HOMO level with the inorganic valence band. Figure 15 shows inorganic semiconductor band diagram model with partially empty valence band and partially full conductive band.

Where: χ is the electron affinity representing the energy needed to extract electrons from the conductive band. E_g represent the energy of the forbidden band gap.

While Charges in a partially filled band contribute to the electrical conductivity, completely filled bands do not contribute to the conductivity of the material. This is due to the fact that charges cannot move since all energy levels (states) are already filled.
Fermi level \((E_F) \) define as the highest energy level occupied by charges at 0 [K] temperature. At room temperature, individual charges near Fermi level gather thermal energy that allow them to fill energy levels above the Fermi level, and at the same time, to free empty states below the Fermi level. Fermi-Dirac distribution function [55] provides the probability \(f(E) \) to find a charge at energy \(E \) at thermal equilibrium:

\[
f(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{kT}\right)}
\]

(2.3)

Figure 16 shows the Fermi-Dirac distribution function verse the energy difference from the Fermi energy level For three different Temperatures, T=0, 300 and 600 K.

Figure 16: Fermi-Dirac distribution function showing the probability verse the energy level for three difference temperatures. The Fermi level defines the filling of energy levels by charges.

The Fermi level (\(f(E) \) black line in figure 17) defines the filling of the energy levels, and together with the density of state (DOS, \(g(E) \) red line in figure 17) it defines the charge density (\(n(E) \) or \(p(E) \) blue line in figure 17). The electron charge density (concentration) as function of energy in the LUMO (conductive) band is defined as:

\[
n(E) = \int g_c(E)f(E)dE
\]

Where: \(g_c(E) \) the density of state in the LUMO (conductive) band

\(f(E) \) Fermi function for electron
On the other side, the holes charge density (concentration) as function of energy in the HOMO (valence) band is defined as:

\[p(E) = \int g_v(E)[1 - f(E)]dE \]

Where:
- \(g_v(E) \) the density of state in the HOMO (valence) band
- \(1 - f(E) \) Fermi function for holes

The Fermi level for intrinsic semiconductor \((E_{Fi}) \) (figure 18) is found at approximately the mid point between the conduction and valence bands. In this case the free electrons densities equal to the free holes densities.

Figure 17: Fermi-Dirac distribution function (black) and Density of state (red) effecting on the charge density (blue) [54].

Figure 18: Intrinsic Semiconductor with Fermi level located at the mid band gap between the LUMO and HOMO levels.
By doping the semiconductor, new energy levels are inserted in the band gap. The new energy levels are formed below the conduction band for N type doping or above the valence band for P type doping. This new states push the Fermi level up for N type dope. On the other hand, the new states push down the Fermi level for P type dope [figure 19 left, right].

Figure 19: Doped semiconductor, Left: N-type semiconductor with new states below the LUMO level pushing the doped Fermi level up, Right: P-type semiconductor with new states above the HOMO level pushing the doped Fermi level down.

In metals the Fermi level is placed inside one of the bands (figure 20a, b). Most of highly conducting metals like Copper (Cu), Gold (Au) and Silver (Ag) has one electron per atom (group 1B at the periodic table) that is free to contribute to the electrical conductivity [56]. Insulators are materials with high band gap and full valence gap (figure 20d). The energy needed to extract electrons from the valence band to the conductive band is much higher compare to semiconductor materials.

Figure 20: Metal, semiconductor and insulator work function; a, b: Fermi level placed inside one of the bands allows metals charge to move freely inside the band. c: Partially empty valence band and partially filled conductive band with 1-3[eV] energy band-gap give the specially properties of semiconductors materials. d: Full valence band with high energy band gap prevents from charge to move inside the insulator bands or to jump to the conductive band.
When metal and organic semiconductors are brought in unity, a charge adjustment takes place, in order to get the two materials into common thermal equilibrium. This equilibrium is reached once the Fermi levels of both materials align. This matching cause an energy levels banding of the organic semiconductor. Two types of junction can appear between the metal and the organic semiconductor:

1. Ohmic contact: contact that allow free charge to flow from both materials, with negligible resistance.
2. Schottky contact: contact that allow unidirectional charge to flow from one material to the other. This restriction is caused by potential barrier between the metal and the organic semiconductor.

2.8.2 Ohmic Contact

One way to define an Ohmic contact between metal and organic semiconductor is that such a contact will not add significant resistance relative to the device bulk resistance. Other definitions involve equilibrium between the metal and the semiconductor or that the contact will not significantly change the equilibrium carrier densities around the contact zone \[57\]. An Ohmic contact should have negligible voltage drop across it and linear current voltage relationship. One of the ways to get this phenomenon in inorganic materials is by heavily doping the semiconductor surface layer between the bulk semiconductor and the metal contact. This heavy doping (marks as P++ or N-- for P type or N type respectively) allows free charge concentrations at the interface, and reduce the potential barrier to a minimum. This effect allows free charge injection from one material to the other.

The common approach used in organic semiconductor research involve the use of low work function metal (like Calcium) for negative charge injection to the LUMO energy level, and high work function metal (like Gold) for positive charge injection to the HOMO energy level. When the work function of the metal coincide with the energy of HOMO or LUMO energy levels a thermal equilibrium will allow a net
charge to inject from the metal surface to the organic semiconductor and doped the interface. In this case an Ohmic contact will exist between the metal and the semiconductor.

Figure 21 shows low work function metal before and after contact to intrinsic organic semiconductor. As can be seen, the interface is filled with negative charges that allow better charge injection from the contact to the organic layer.

Figure 21: Low work function metal, Left: before and, Right: after contact with semiconductor. If the metal work function coincide with the LUMO (as shown in this figure) or HOMO level an Ohmic contact will mostly appears at the interface.
2.8.3 Schottky Contact

A Schottky contact appears at metal organic semiconductor interface when the metal work function is located inside the organic semiconductor band gap. In this case an energy barrier (ϕ_{B0}) is form between the metal contact and the organic semiconductor (figure 22):

$$\phi_{B0} = \Phi_m - \chi$$

(2.4)

Where:
\(\chi\) Organic Semiconductor electron affinity
\(\Phi_m\) Metal work function

![Figure 22: When a metal work function is located inside the semiconductor an energy barrier of size \(\phi_{B0}\) is form between the metal contact and the organic semiconductor, causing a Schottky contact phenomenon.](image)

This barrier is lowered by the image force induced on the metal surface when charge (q) is located at distance (x) from the metal. The force of attraction between the charge and the inducted metal charge (-q) define as:

$$F_i = \frac{-q^2}{4\pi(2x)^2\varepsilon_s} = \frac{-q^2}{16\pi\varepsilon_s x^2}$$

(2.5)

Where: \(\varepsilon_s\) is the Semiconductor permittivity.
The work needed (Electric potential) to transfer charge from infinity to point \(x \) is:

\[
U_i(x) = \int_{\infty}^{x} F_i dx = \frac{q^2}{16\pi\varepsilon_x x} \quad (2.6)
\]

By applying external field \(E \) the electric potential is modified to:

\[
P(x) = \frac{q^2}{16\pi\varepsilon_x x} + qE_x \quad (2.7)
\]

Figure 23 shows the image potential energy (black dotted line) as defined by formula 2.6 and the energy band diagram effect by the electric field (red line) as defined by formula 2.7.

![Figure 23: Energy band of metal contact and a vacuum. Image charge line and electric field line influence on the lowering of the contact barrier. In this figure the Schottky barrier lowering \(\Delta\phi \) and the peak distance from the interface \(X_m \) can be seen.](image)

The Schottky barrier lowering \(\Delta\phi \) and the peak distance from the interface \(X_m \) can be extruded by the condition \(dP(x)/dx = 0 \):

\[
X_m = \sqrt{\frac{e}{16\pi\varepsilon_x E}} \quad (2.8)
\]

\[
\Delta\phi = \sqrt{\frac{eE}{4\pi\varepsilon_x}} \quad (2.9)
\]
Lateral And Vertical Organic Thin Film Transistors

The thermionic emission theory by Bethe [57] is used to describe the charge injects at Schottky barrier. This theory assumes thermal equilibrium at the interface and barrier’s height that is much larger compare to thermal energy kT. Two types of current exist in the interface:

1. Forward current: Electron current density from the semiconductor into the metal $J_{s\rightarrow m}$
2. reverse current: Electron current density from the metal into the semiconductor $J_{m\rightarrow s}$

The current density $J_{s\rightarrow m}$ is given by the electron concentration which has higher energy compare to the potential barrier $E_F + \phi_{m}$:

$$ J_{s\rightarrow m} = \int_{E_F + \phi_{m}}^{\infty} e \nu_s dn $$

(2.10)

Where: ν_s is the charge velocity in the transport direction.

The electron density d_n is defined as the density of state $N(E)$ multiplex with the distribution function $F(E)$:

$$ d_n = N(E)F(E)dE = \frac{4\pi(2m^*)^{3/2}}{h^3} \sqrt{E-E_c} \exp\left[\frac{(E-E_F)}{kT}\right]dE $$

(2.11)

Where: m^* is the semiconductor effective mass

By determination that the charge energy is defined only by kinetic energy we can rewrite the following relation:

$$ E - E_c = \frac{1}{2} m^* \nu^2 $$

(2.12)

The net current density in the metal to semiconductor junction can be rewrite as:

$$ J = J_{s\rightarrow m} - J_{m\rightarrow s} $$

(2.13)
Lateral And Vertical Organic Thin Film Transistors

This lead to net current density:

\[J = \frac{4\pi m^* k^2}{h^3} T^2 \exp\left(-\frac{e\phi_{bn}}{kT}\right)[\exp\left(\frac{eV_a}{kT}\right) - 1] \]

(2.14)

Where: \(V_a \) is the applied forward voltage
\(\phi_{bn} \) is the Schottky barrier height define as:
\[\phi_{bn} = \phi_{b0} - \Delta\phi \]

(2.15)

By defining \(J_0 \) (reverse saturation current) as:

\[J_0 = A^* T^2 \exp\left(-\frac{e\phi_{b0}}{kT}\right) \]

(2.16)

And \(A^* \) as the Richardson constants

\[A^* = \frac{4\pi m^* k^2}{h^3} \]

(2.17)

We can rewrite formula 2.14 as:

\[J = J_0 [\exp\left(\frac{eV_a}{kT}\right) - 1] \]

(2.18)

Formula 2.18 shows that the forward current will increase exponential as the applied forward voltage increase.

The reverse saturation current can be rewrite using 2.15 and 2.16 as:

\[J_0 = A^* T^2 \exp\left(-\frac{e\phi_{b0}}{kT}\right) \exp\left(\frac{e\Delta\phi}{kT}\right) \]

(2.19)

Formula 2.19 shows that the reverse saturation current is define by the energy barrier \(\phi_{b0} \), but could be increase exponential by reducing the Schottky barrier (By increasing \(\Delta\phi \)). Figure 24 shows the energy band diagram of metal and semiconductor under different reverse bias voltage. By increasing the reverse voltage
from \(V_1 \) to \(V_3 \) the Schottky barrier lowering value increase from \(\phi_1 \) to \(\phi_3 \). This effect increases the electron injection from the metal into the semiconductor.

\[
\begin{align*}
\text{Vacuum Level} \\
\uparrow & e\Phi_m \\
\uparrow & e\phi_1 \\
\uparrow & e\phi_3 \\
\uparrow & E_{\text{Fermi}} \\
\downarrow & \text{Metal} \\
\downarrow & \text{OSC} \\
\downarrow & \begin{array}{c} V_1 < V_2 < V_3 \end{array} \\
\end{align*}
\]

Figure 24: Schottky barrier lowering \(\Delta \phi \) by applying reverse electric field for different voltage condition. This figure shows the reduction of the barrier (moving from \(\Delta \phi_1 \) to \(\Delta \phi_3 \)) as the reverse potential rise (moving from \(V_1 \) to \(V_3 \)) [57].
Lateral And Vertical Organic Thin Film Transistors
3. LATERAL THIN FILM TRANSISTOR

3.1 introductions

This chapter deals with lateral OTFT structure and its basic operation principles. We briefly describe the state of the art C₆₀ OTFTs thus showing the high quality and the relevance of understanding the unique features of these devices. This chapter includes literature survey for published C₆₀ OTFT. The basic TFT principles are included with definitions for threshold voltage, trap effect and effective mobility coefficient.
3.2 Lateral OTFT structure

Lateral structure is the common architecture found in the semiconductor industry. This architecture includes horizontal alignment of the source and drain electrodes while the gate electrode is placed below or above the active semiconductor. Top gate lateral FET is illustrated in figure 25. This device structure is been used as the basic element for inorganic CMOS integrate digital circuit.

Figure 25: Top gate lateral FET. This structure is used frequency in CMOS integrated digital circuit [56].

Figure 26 shows Bottom Gate TFT that is mostly used in amorphous silicon TFT (ai-Si TFT) and in OTFT.

Figure 26: Bottom gate coplanar OTFT. This structure is the common structure for ai-Si TFT and for OTFT devices. In this structure, the active semiconductor is deposited or spin-coated over the insulator and source & drain contacts. This process allows inspecting different type active semiconductor materials while using standard substrate structure.
The TFT architectures consisting of Bottom gate can be divided into coplanar or staggered structures [22, 58, 59]. The coplanar structure is shown in figure 26. This device structure includes bottom source and drain contacts, which are evaporated on top of the insulator layer, before the deposition of the active organic layer. Most of the C$_{60}$ transistors in literature are built in coplanar architecture. In this structure the effective contact area C_a, through which charge is injected into the channel, is determined by the metal contact thickness (~50 to 100nm) multiplied by the contact width, $C_a=C_d*W$ (see figure 26). This area is significantly smaller compared to the contact area found in the staggered structure.

The staggered structure includes top source and drain contacts that are evaporated over the active organic layer (figure 27).

![Figure 27: Bottom gate staggered OTFT. In this structure the drain and source contacts are evaporated over the active semiconductor layer. This structure was used in this thesis as lateral OTFT devices.](image)

In the staggered architecture, the contact area is determined by metal contacts area that overlaps the gate. In this thesis, we used the staggered architecture. In our design the gate area underlines the channel, source, and drain contacts. This creates a theoretical contact area larger by three orders of magnitude (contact length ~100um compare to contact thickness ~100nm) compared to the coplanar architecture. This architecture may be a better choice when the contact resistance is the limiting parameter of the TFT performance [60, 97].
3.3 C₆₀ OTFT – literature survey

First attempt to use Fullerene as active semiconductor in OTFT [61] showed low mobility in the range of 10⁻⁴ [cm²/Vs]. In 1995, work by R.C. Haddon et al. [62] showed mobility of 0.08 [cm²/Vs] and threshold voltage of 15[V] for C₆₀ evaporated on N⁻Si/SiO₂ substrate in ultra high vacuum (UHV) system (<10⁻⁸ Torr). In addition, the authors managed to boost the mobility up to 0.3 [cm²/Vs] with negative threshold voltage of -2.7[V] by using N⁻Si/SiO₂ substrate treatment with tetrakis-dimethylamino-ethylene (TDAE). TDAE can form 1:1 compound with C₆₀ [63, 64]. The boost in the performance is explained by the formation of C₆₀/TDAE thin layer complex at the C₆₀/SiO₂ interface. The role of this complex was suggested to be in lowering the barrier to electron injection from the gold electrode to the C₆₀ LUMO levels. This is supported by the fact that high contact barriers are known to enhance the effective threshold voltage and reduce the effective mobility [97].

Kobayashi et al. [65] work showed even better mobility of up to 0.5 [cm²/Vs] and on/off ratio larger then 10⁸. They fabricated and measured C₆₀ OTFT in UHV (fabrication at <10⁻⁹ Torr, measurement at <10⁻¹⁰ Torr). The reported threshold voltage was still high, Vₜ=17[V] due to Au/ C₆₀ high barrier contacts. In addition, this group has controlled the C₆₀ film grain size by controlling the substrate temperature during the evaporation stage. They did not find any correlation between the grain size and the mobility values.

Exposure of C₆₀ OTFT to ambient air destroyed the field effect current and causes bulk resistance enlargement by 4 to 5 magnitude order [62]. This suggests that oxygen penetrate into the film and react with the C₆₀ lattice to create electron traps. These deep traps are efficient recombination centres for electrons and holes, causing decreasing in the free carrier density [66]. Konenkamp et. al. [85] shows that the electronic transport properties are strongly affected when C₆₀ is exposed to oxygen. Both, hole and electron drift mobilities were found to decrease with oxygen uptake, while the recombination lifetime increases due to the slower transport.

As the oxygen does not react with the C₆₀ molecule it is possible to extract it under vacuum. A work that was done by Tapponnier et al. [67] showed that the C₆₀ OTFT
Lateral And Vertical Organic Thin Film Transistors

mobility was boosted by one order of magnitude, from 0.08 [cm²/Vs] to 0.5 [cm²/Vs], by UHV (5*10⁻⁷ [mBar]) annealing at temperature of 120°C for two hours. This indicated that high vacuum annealing could reduce the oxygen traps in the C₆₀ film.

Another group, Kanbara et al. [13], has fabricated “NOT” logic gate from N type C₆₀ OTFT with mobility of 0.1 [cm²/Vs] and P type Pentacene OTFT with mobility of 0.3 [cm²/Vs]. This group showed that the best C₆₀ OTFT performance was achieved for 10nm C₆₀ film. Increasing or decreasing the C₆₀ film thickness cause decreased in the mobility value and increase in the threshold voltage. The best threshold voltage achieved in this research was 11[V]. In all the above publishing a coplanar shape C₆₀ OTFT devices were used with gold source and drain electrodes. The C₆₀ film was evaporated on the gold electrode.

Large efforts were invested in synthesis good soluble C₆₀ derivatives. [6,6]-Phenyl C₆₁ butyric acid methyl ester (PCBM) OTFT has yield mobility of up to 0.023 [cm²/Vs] with 10⁴ on/off ratio [68] (figure 29, right). In 2004, a Japanese AIST group succeeded in synthesis C₆₀ -fused Pyrrolidine meta-C₁₂ pheryl (C₆₀MC₁₂) with crystalline micro grain thin film for OTFT. This OTFT has tripled the PCBM mobility to 0.067 [cm²/Vs] with 10⁵ on/off ratio [69] (figure 28, left).

![Figure 28: Two types of synthesis soluble C₆₀ materials for OTFT devices. Left: C₆₀-fused Pyrrolidine Meta-C₁₂ Pheryl (C₆₀MC₁₂) showing crystalline micro grain gave effective mobility values of 0.067 [cm²/Vs] [69]. Right: [6,6]-Phenyl C₆₁ Butyric Acid Methyl Ester (PCBM) OTFT has yield effective mobility of up to 0.023 [cm²/Vs] [68].](image)

Another interesting soluble C₆₀ OTFT was present by Y.Hayashi et al. [70]. This device includes blend of C₆₀ with P type MEH-PPV conjugated polymer. The device
behaviour, influenced by the MEH-PPV: C₆₀ concentration, changed from P type to N type properties. Concentration of 1:1 between the MEH-PPV and the C₆₀ gave ambipolar behaviour with N type and P type mobility in the range of 10^{-4} [cm2/Vs] and 10^{-5} [cm2/Vs], respectively.
3.4 Metal Oxide Semiconductor Capacitor

The core of the TFT is the metal-insulator-semiconductor (MIS) capacitor. One sub-technology of MIS is the metal-silicon dioxide (SiO₂)-semiconductor (MOS) capacitor, which is used frequently in the industry, and has been used extensively in this thesis. We used SiO₂ insulator due to better leakage performances and better homogeneity compared to other alternatives.

The OTFT is basically an active organic material (C₆₀ in this Thesis), with source and drain contacts, which are part of the MIS capacitor as shown in figure 29. By changing the gate voltage, the MIS capacitor modulates the charge carrier density near the semiconductor insulator junction. The gate bias induces bending of the HOMO and LUMO levels relative to the Fermi level near the semiconductor-insulator interface. In other words, the gate-source voltage attract charge carriers at the semiconductor-insulator interface, which are induced by the opposite charges carrier at the gate electrode. The charge carriers inducted at the interface (Channel) reduce the resistance between the source and the drain electrode and form a conducting channel. By changing the MIS capacitor voltage polarity or magnitude, we can control the charge carrier concentration at the interface and by that we control the resistance between the source and drain electrodes, as shown in figure 29. The region occupied by charge carriers near the interface and between the source and drain electrodes is defined as the channel area.

![Figure 29: Negative charges in the channel induced by positive charge in the gate electrode reduce the resistance between the source and drain contacts. The external connection includes Vgs and Vds supply.](image-url)
3.4.1 Flat band

When metal, insulator and semiconductor materials are joint together to form MIS capacitor an equilibrium state occurs by Fermi level alignment between the metal work function and the semiconductor Fermi level (a short between the semiconductor bulk and the metal contact may be needed to promote this equilibrium). This equilibrium and the associated charging, causes the HOMO and LUMO levels to bend near the interface between the semiconductor and the insulator. In addition, it causes a shift in the vacuum levels of the metal and the semiconductor. Figure 30 shows the individual MIS materials work function with N type semiconductor before the contacts.

Figure 30: Metal, insulator and semiconductor energy levels before physical contact [56].

Figure 31 shows the Fermi level alignment and the energy levels bending of the semiconductor and the insulator after equilibrium state is achieved.

Figure 31: Fermi level alignment and the energy levels bending of the semiconductor and the insulator at equilibrium state.
The existence of nonzero potential between the gate material and the semiconductor cause net charge to appear on both sides of the insulator. The metal-semiconductor work function difference is equal to:

$$\phi_{MS} = \phi_M - (\chi_S + \frac{E_{gs}}{2q} - \phi_F)$$ \hspace{1cm} (3.01)

Where: ϕ_M is the metal work function

χ_S is the semiconductor electron affinity

E_{gs} is the semiconductor gap energy

ϕ_F is the potential difference between the intrinsic Fermi level and the doped Fermi level. In the case of non-degenerate semiconductors, it is defined by:

$$\phi_F = V_t \ln \frac{N_d}{n_i}$$ \hspace{1cm} (3.02)

Where: V_t is the thermal voltage ($V_t = kT/e$, for $T=300$ K $V_t=0.00259[V]$)

N_d is the donor doping concentration

n_i is the intrinsic carrier concentration

The contact potential effect (The different energy levels of the metal and semiconductor) is not the only one that causes net concentration of charges. A “Parasitic” charge may exist in the insulator and influence the charge concentration in the MIS device. This charge consists of the three parts:

1. Interface trap charges exist at the insulator semiconductor interface. It is caused by defects or dangling covalent bonds at the interface. These defects trap mobile carriers in the channel, and act as donors or acceptors points.

2. Insulator trapped charge can exist throughout the insulator bulk. This charge can be acquired during the insulator fabrication, or through radiation, photoemission or high-energy injection.

3. Mobile ionic charge. These mobile charges can move through the insulator bulk by the influences of electric field.
If we will define the “trapped” charge as Q_{ss} and assume it is concentrated close to the insulator semiconductor interface (as appear in figure 32) then the induced potential drop across the insulator is:

$$V_{\text{ins}} = \frac{-Q_{ss}}{C_{\text{ins}}}$$

(3.03)

Where C_{ins} is the Insulator capacitance and is equal to:

$$C_{\text{ins}} = \frac{\varepsilon_{0}\varepsilon_{\text{ins}}}{t_{\text{ins}}}$$

(3.04)

Where: ε_{0} is the free space permittivity

ε_{ins} is the insulator relative permittivity

Going back to figure 31, in which the MIS capacitor is in equilibrium without external potential, we can sum the energy levels as:

$$-\phi_{\text{MS}} = \phi_{s0} + V_{\text{in}0}$$

(3.05)

If a gate voltage V_{g} is applied then the potential drop across the insulator and the surface potential changes to:

$$V_{g} = \Delta V_{\text{in}0} + \Delta \phi_{s} = (V_{\text{in}} - V_{\text{in}0}) + (\phi_{s} - \phi_{s0})$$

(3.06)

By inserting equation 3.05 into 3.06, we get:

$$V_{g} = V_{\text{in}} + \phi_{s} + \phi_{\text{me}}$$

(3.07)

Flat band conditions exist when no charge is present in the semiconductor, and the Semiconductor energy bands are flat. In this condition, the surface potential equals to zero, and the charge density on the gate metal should cancel the parasitic charge exist in the insulator:

$$Q_{m} + Q_{ss} = 0$$

(3.08)

Therefore in flat band condition the gate potential is equal to:
Lateral And Vertical Organic Thin Film Transistors

\[V_g^{(FB)} = \phi_{ms} + V_{ins} = \phi_{ms} + \frac{Q_{ss}}{C_{ins}} \]

(3.09)

Figure 32: Flat band conditions after applying external potential \(V_{FB} \) needed in order to cancel any charge in the semiconductor. Left: Flat LUMO & HOMO levels at flat band condition. Right: Charge distribution appears at flat band condition.

3.4.2 Depletion Mode & Inversion Mode

Surface depletion occurs when the majority charge carriers in the semiconductor material (electrons in the N type semiconductor) depleted away by the negative gate voltage. Figure 33 shows the depletion mode.

Figure 33: Depletion mode appears when the majority charge carriers in the semiconductor depleted away by the gate voltage. Left: LUMO & HOMO band bending causing depletion of negative charge from the semiconductor-insulator interface. Right: Charge distribution appears at depletion condition.

When the Fermi level in the insulator-semiconductor junction is equal to the intrinsic Fermi level then the depletion layer thickness is equal to:
Lateral And Vertical Organic Thin Film Transistors

\[X_d = \sqrt{\frac{2\varepsilon_s\varepsilon_r\phi_F}{eN_d}} \]

(3.10)

Where: \(\varepsilon_r \) is the semiconductor relative permittivity

Increasing the gate negative voltage also attracts holes (the minority carriers in N type semiconductor) to the junction, which form the so-called inversion layer. In this case the Fermi level is crossed by the intrinsic Fermi level, and inversion of the carrier type appear between the cross point and the insulator-semiconductor junction.

When the holes concentration at the surface and the electron concentration in the bulk are equal, or in other words, when the HOMO and LUMO levels bend by \(2e\phi_F \), the maximum depletion layer length is equal to:

\[X_{dtr} = \sqrt{\frac{4\varepsilon_s\phi_F}{eN_d}} \]

(3.11)

Figure 34: Inversion mode start to appear when the majority and minority charges concentration in the semiconductor are equals. Carriers in the Semiconductor depleted away by the gate voltage. Left: LUMO & HOMO band bending by \(2e\phi_F \), Right: Charge distribution at Inversion mode where inverted charge \(Q_{inv} \) carriers added to the depletion charge \(Q_d \).

This point known as the threshold inversion point and the applied gate voltage creating this condition called as the “Threshold Voltage” (\(V_T \)). Any gate voltage increscent above this voltage will increase only the inverted charge carrier +\(Q_{inv} \) near
the insulator-semiconductor junction and will not affect the depletion layer length (figure 34).

3.4.3 Accumulation Mode

While inorganic TFT works in inversion mode, organic TFT works in accumulation mode, where the majority charge carrier are accumulated near the insulator-semiconductor junction.

For C$_{60}$ OTFT, negative charge carriers are accumulated in the junction by the positive gate charge as shown in figure 35.

![Figure 35: Accumulation mode, where the majority charge carrier are accumulated near the insulator-semiconductor junction. Left: LUMO & HOMO band bending causing accumulation of negative charge into the semiconductor-insulator interface. Right: Charge distribution appears at accumulation condition.](image-url)
3.5 Lateral Metal Oxide Semiconductor TFT

3.5.1 Current Voltage relationship

The linear model describes TFT behavior with small drain source voltage. If we negligible the drain and source contact effect we could refer to the TFT as linear device, with channel resistance modulated by the gate source voltage.

In this model we used the following assumptions:

1. The current in the channel is due to drift current, while the diffusion current is being neglected.
2. There isn’t any current leakage through the insulator layer.
3. We assume that $\frac{\partial E_y}{\partial y} >> \frac{\partial E_x}{\partial x}$. This means we could assume constant electric field across the channel.
4. Any Insulator charge is being equivalent by charge density at the insulator-semiconductor interface.
5. The charge carrier mobility in the channel is constant.

The current density across the channel according to Ohm law is:

$$J_x = \sigma E_x \quad \text{(3.12)}$$

Where σ is the channel conductivity.

For unipolar charge carrier (electrons) the channel conductivity is defined as:

$$\sigma = e\mu n(y) \quad \text{(3.13)}$$

Where: $n(y)$ is the electron concentration in the channel

μ is the electron mobility defined as the charge velocity divided by the electric field:

$$\mu = \frac{V}{E} \quad \text{(3.14)}$$

The channel charge per unit area is equal to:
The total channel current is:
\[I_x = \iint J_z \, dz \, dy = \mu \int e_n(y) \, dy \int dz \]

Integration equation 3.16 and inserting equation 3.15 we get:
\[I_x = -\mu Q_{ch} W E_x \]

Where: \(W \) is the channel width accepted by integration over \(z \) axis.
\[E_x = \frac{dV_x}{dx} \]

The channel charge \(Q_{ch} \) per unit area is assumed to be constant across the channel. And it is accumulated across the channel after flat band has achieved (the flat band appears, as define in 3.3.1):
\[Q_{ch} = -C_{ins} (V_{gs} - V_x - \phi_{ms} - V_{ins(FB)}) \]

Where: \(V_{gs} \) is the gate to source potential
\(V_x \) is the potential in the channel at a point \(x \)

And the Insulator capacitor per unit area is:
\[C_{ins} = \frac{\varepsilon_0 \varepsilon_{ins}}{t_{ins}} \]

Where: \(\varepsilon_0, \varepsilon_{ins} \) are the permittivity of free space and relative insulator permittivity
\(t_{ins} \) is the insulator layer thickness

We will define a threshold voltage \(V_T \) (more in section 3.5.3) as:
\[V_T = \phi_{ms} + \frac{Q_{ms}}{C_{ins}} = \phi_{ms} + V_{ins(FB)} \]

Now we can rewrite equation 3.19 as:
Lateral And Vertical Organic Thin Film Transistors

\[Q_{ch} = -C_{ins}(V_{gs} - V_x - V_T) \]
 \((3.22) \)

Substituted equation 3.22 in 3.17 gives:

\[I_x = \mu C_{ins}(V_{gs} - V_x - V_T) W \frac{dV_x}{dx} \]
 \((3.23) \)

Integration 3.23 over the channel length \(L \) and the drain source potential \(V_{ds} \) gives:

\[\int_{0}^{L} I_x dx = \int_{V_x}^{V_d} \mu C_{ins}(V_{gs} - V_x - V_T) W dV_x \]
 \((3.24) \)

The current \(I_x \) is constant and equal to the drain source current \(I_{ds} \):

\[I_{ds} = I_x = \frac{\mu C_{ins} W}{L} \left[(V_{gs} - V_T)V_{ds} - \frac{V_{ds}^2}{2} \right] \]
 \((3.25) \)

Equation 3.25 can be used as long as \(|V_{ds}| < |V_{gs} - V_T| \). This region is called the linear region.

However, when drain-source voltage increases above this limit, section of the channel (near the drain electrode) will move to depletion state, cancelling charge accumulation at this zone. By increasing the drain-source voltage the channel depletion zone enlarge. This bottleneck section limits the channel current by increasing the channel resistance associate with increasing the channel depletion that is affected by the drain-source voltage. In turn, this dependence causes the channel current to get into saturation region.

For this case, equation 3.24 integration boundaries are:

\[\int_{0}^{L_{eff}} I_{ds}(y) dy = \int_{V_g - V_T}^{V_d} \mu W C_{ins} [V_g - V(y) - V_T] dV(y) \]
 \((3.26) \)

Where: \(L_{eff} \) is the effective channel length
\(V_g - V_T \) is the voltage boundaries inside \(L_{eff} \)

For long channel transistor (\(L >> d \) in lateral transistors) the depletion section is small compare to channel length (\(L - L_{eff} << L \)). So we can rewrite \(L_{eff} \) as \(L \). Integration of 3.26 gives: \((3.27) \)
Lateral And Vertical Organic Thin Film Transistors

\[I_{ds}L = \mu WC_{\text{ins}} \left[(V_g - V_T) - \frac{V^2}{2} \right]_0 \]

Or:

\[I_{ds} = \mu C_{\text{ins}} \frac{W}{2L} (V_{gs} - V_T)^2 \] \hspace{1cm} (3.28)

Equation 3.28 can be used as long as \(|V_{ds}| > |V_{gs} - V_T|\). This region defines as the “saturation region”. Figure 36 shows the linear (left) and saturation regions (right).

Figure 36: Conductance characteristic for thin film transistor. This conductance figure shows the linear relations between the drain-source voltage and the channel current for low drain voltage.

For higher drain-source voltage, the channel current enters into saturated region [56].
3.5.2 Equivalent circuit

Staggered shape OTFT can be equivalent to three-region circuit [60, 71] (figure 38):

1. Source contact region – reverse Schottky diode (D_s) with serial resistor (R_s)
2. Channel region – Resistor (R_c) and capacitor (C_i) distributed path
3. Drain contact region – forward Schottky diode (D_d) with serial resistor (R_d)

In addition, parasite capacity (C_p) and insulator leakage resistance (R_l) completing the equivalent circuit, as appear in figure 37.

![Figure 37](image1.png)

Figure 37: Equivalent circuit for lateral staggered OTFT device. This circuit include non-Ohmic contacts with serial resistance and channel resistance. In addition the channel capacitance and contacts parasitic capacitance are shown.

The metal-semiconductor contact energy barrier causes a nonlinear effect that appears at the contact region. This nonlinear effect can be equivalent to a Schottky diode with serial contact resistor.

![Figure 38](image2.png)

Figure 38: different view of figure 37 showing the serial components influencing the channel current of OTFT device. In this figure we have neglect parasitic effects.
The ratio between the contact serial resistor (R_s, R_d), the channel resistor (R_c) and the diode voltage drop ($V(D_s + D_d)$) gives the I_{ds}-V_{ds} conductance characteristic:

$$I_{ds} = \frac{V_{ds} - V_{ds}(\phi_b, \eta) - V_{Gd}(\phi_b, \eta)}{R_s + R_c(\mu_s, L) + R_d}$$ \hspace{1cm} (3.29)

Figure 39 shows the conductance characteristic of dihexylquaterthiophene (DH4T) OTFT [72] with variable channel length ($L=2, 0.4, 0.2, 0.1 \text{ [um]}$). By reducing the channel length the channel resistance reduced, and the nonlinear effect caused by the contacts become more prominent.

![Figure 39: DH4T OTFT [72] with variable channel length. By reducing the channel length the channel resistance reduced and the non-linear effect caused by the contacts become more prominent.](image)

Work done by H. Klauk et al. [73] showed that for Pentacene TFT with palladium contacts, the contact resistance can be about 5 to 10 times greater than the channel resistance. In this case, the OTFT dynamic performance is limited more by the contact resistance than the Pentacene carrier mobility. Figure 40 shows the total contact resistance and channel resistance dependence on the gate-source and drain-source voltage.
The channel resistance decreases with increasing gate-source voltage, due to the increasing of the gate inducted charge carrier at the channel. Moreover, the contact resistance decreases, due to the contact-semiconductor barrier lowering, or in other words, is due to increase of charge carrier density near the contacts that act as contact doping.

3.5.3 Threshold Voltage

Typically, the threshold voltage is determined as the applied gate voltage needed to achieve measurable channel current flow. In inversion mode inorganic transistor, the threshold voltage (in the case of N type semiconductor) defines as the voltage needed for bending the Fermi level by $2\phi_{F_n}$:

$$V_T = \phi_{int} + V_{\text{ins}(T)} + 2\phi_{F_n}$$ \hspace{1cm} (3.30)

Where ϕ_{F_n} is the potential difference between E_F to E_{F_n} for N type semiconductor.

$V_{\text{ins}(T)}$ is the voltage drop across the insulator at the threshold inversion point.

Accumulation mode organic transistor does not have exact threshold voltage determination. The charge accumulation at the channel appears after Flat band
condition achieved. Therefore, few articles define the flat band voltage as the threshold voltage. The flat band condition depends on the metal-semiconductor work function difference and on the density of charges trapped in the insulator bulk and interface (for Ohmic contacts):

\[V_T(\Omega) = \phi_{ms} + \frac{Q_{ss}}{C_{ins}} \]

(3.31)

As showed in the previous chapter the contact effects are not negligible for OTFT devices. Because of the intrinsic characteristic of organic semiconductor, most of the accumulated channel charge carriers are injected from the contacts. In cases where non ohmic contacts exist, the gate-source voltage need to exceed a critical value to overcome the injected limit caused by the contact energy barrier. And therefore, the Threshold Voltage includes additional parameter that depends on the contact-semiconductor energy barrier \(\phi_{ms} \), and on the organic semiconductor thickness \(t_s \):

\[V_T = V_T(\Omega) + V_T(inj) = \phi_{ms} + \frac{Q_{ss}}{C_{ins}} + V(\phi_{ms}, t_s) \]

(3.32)

Figure 41 shows the calculated potential, using a 2D device simulation [97], distribution at the channel. The device was biased in the linear regime \((V_{gs}=-5[V], V_{ds}=-3[V]) \) and the potential and current distributions were calculated. We note that for the 0.5 [eV] barrier height the potential at the channel underneath the source shifts towards the gate potential by 0.7 [V]. Since the transistor performance are dictated by the potential at the channel interface this will also manifest itself as an apparent increase of the threshold voltage. Matching the source contact work function to the organic semiconductor bands, and reducing the potential needed for flat band condition, will cause a reduction in the threshold voltage.
Figure 41: Calculated potential distribution at the channel interface [97]. The applied bias is $V_{gs} = -5\text{[V]}$, $V_{ds} = -3\text{[V]}$. The top and bottom lines were calculated for barrier heights of 0.2[eV] and 0.5[eV], respectively.

Schroeder, Majewski and Grell [74] measured the threshold voltage influenced by the Pentacene semiconductor thickness (figure 42). They showed that the threshold voltage increase with the Pentacene thickness. This is caused due to electric field reduction at the contacts-semiconductor interface.

Figure 42: Threshold voltage increase with Pentacene thickness. Transfer characteristic of six Pentacene OTFT with different Pentacene thickness. The lower threshold voltage was measured as $V_T = -0.67\text{[V]}$ for 30[nm] thin Pentacene (plus), while the higher threshold voltage was measured as $V_T = -2.69\text{[V]}$ for 930[nm] thin Pentacene (stars) [74].

C$_{60}$ and Pentacene OTFT are well behaved square law devices. In order to calculate the V_T, we have extract the threshold voltage from the $\sqrt{I_d} \sim V_{gs}$ transconductance characteristic when the device was at deep saturation zone ($V_{ds} >> V_{gs}$).
3.5.4 Trap Effect

Disorder, defects and impurities located at the OTFT channel and at the insulator-semiconductor interface are forming trapping states.

Improving deposited conditions, semiconductor purification and insulator substrate treatment with self-organizing material like octadecyltrichlorosilane (OTS) leads to decrease at the traps concentration, and lead to improvement in the OTFT mobility factor. At poly crystalline organic semiconductor, Like Pentacene and Perylene, traps mostly appear at the grain boundaries. Insulator treatment with self organizing material leads to improved surface characteristics and to larger grains size, in which reduce the grain boundaries traps [75, 76].

Horowitz et al. [77] assumed that when OTFT operating at the threshold voltage, part of the charges are trapped in the surface traps and only portions of the carriers participate in the current conduction. When the gate bias is increased, the Fermi level moves up and more traps are filled. In this case more induced carriers will move across the channel until a point where all the traps are filled. At this point carrier charges moves with a constant mobility. Figure 43 shows the traps states located at the insulator-semiconductor interface filled by the Fermi level rise.

![Figure 43: Fermi level rises cause trap’s state located at the insulator-semiconductor interface to be filled. Left: Without gate bias the Fermi level located in the band gap is far from the conductive band. In this case the trap’s state below the conductive band is empty of charge. Right: Rising of the gate bias cause rising in the Fermi level towards the conductive band. This effect fills the interface traps close to the conductive band [77].](image)
3.5.5 Mobility

The mobility is one of the important parameters that define the TFT quality. The mobility is defined as the charge velocity divided by the electric field:

\[\mu = \frac{\nu}{E} \]

(3.33)

Two powerful experiments are used to define the material charge mobility. The first is time of flight (TOF), where mobile charges are generated by photonic excitation. The charges are accelerated by external electric field (E). The mobility can be measured by the time (\(\Delta t \)) it takes the charges to move through a path of distance (L):

\[\mu_{\text{TOF}} = \frac{L}{\Delta t E} \]

(3.34)

Other approach is to extract the mobility by current-voltage conductance or transconductance characteristics of field effect transistor (or TFT in our case) using equation 3.25 for linear region:

\[\mu_{\text{FE,lin}} = I_{ds} \frac{L}{C_{ins} W} \frac{1}{(V_{gs} - V_T)V_{ds} - \frac{V_{ds}^2}{2}} \]

(3.35)

And equation 3.28 for saturation region:

\[\mu_{\text{FE,sat}} = I_{ds} \frac{L}{2C_{ins} W (V_{gs} - V_T)^2} \]

(3.36)

OTFT effective mobility depends on device design materials and geometry and not only on the Semiconductor intrinsic mobility. This effective mobility depends on the non-linear contact resistance, traps filling at the insulator-semiconductor interface and on the electric field existing at the channel.

Many published articles tried to fit equation 3.25 and 3.28 with contact effect [72, 73], trap filling [77, 78] and electric field dependence mobility [60, 79]. Still most of
the publish papers on OTFT characteristics are leaning on equation 3.35 and 3.36 to calculate the device mobility. In this thesis, we focus on quantity comparison with other C_{60} TFT and OTFT publish papers. Therefore, we used equation 3.35 and 3.36 to define the devices mobility. These equations allow us to get variation plot of the OTFT field effect mobility as a function of the gate and drain voltage obtained from the trans-conductance graphs.
Lateral And Vertical Organic Thin Film Transistors
4. LATERAL OTFT PROCESSING & CHARACTERIZATION

4.1 introduction

In this chapter we show the fabrication process of lateral C_60 organic TFT. This process include insulator coated, C_60 thermal evaporation, and metal electrodes evaporation. We characterize the current-voltage response, the threshold voltage, and the effective mobility value. In the second part, we characterize the performance of different contact types OTFT. We use a work function model to explain the performance variation.
4.2 Device processing

4.2.1 Silicon platform

As described in chapter 3, lateral OTFT includes gate electrode, insulating material, semiconductor organic material, and conducting source & drain electrodes. Due to the simplicity of the bottom gate staggered shape (figure 28), we used this shape to fabricate our C_{60} lateral OTFT. All the fabrication process and measurements are done in a glove box with a nitrogen atmosphere due to oxygen sensitivity of the C_{60} organic material.

The devices are prepared on top of a P-doped silicon substrate with thermally grown silicon dioxide, which we used as a gate insulator. The thickness of the silicon dioxide is 50[nm]. This thickness allows us to get low voltage operation, but on the other hand, this thin oxide layer cause high leakage current and low breakdown voltage (mostly around V_{g}~25[V]). These substrates were kept in the glove box until the TFT evaporating stages.

During the work on this thesis we inspected different types of organic insulators. For the device that we characterize in chapter 4.2 we used double insulator. The doped silicon/silicon dioxide substrates were spin coated with PS-b-PMMA (polystyrene-block-poly(methylmethacrylate)) insulator. The thickness of the organic insulator layer was 45 to 50 [nm]. This thickness is adjustable by controlling the viscosity of the solution and the spin coating rotation speed. We used 1% weight solution ratio. The rotation speed was 2000 [RPM]. The substrates were rotated for 80 [sec] with 1 [sec] acceleration time. Following the coating process the substrates were annealed for 12 [hours] at 250^0 [C] under dry vacuum condition. This additional organic insulator double the insulator thickness layer from 50 [nm] to 95-100 [nm]. We refer to the double insulator layer as two serial capacitors with theoretical total capacity of:

\[
C_{\text{tot}} = \frac{C_{\text{ox}} \cdot C_{\text{oi}}}{C_{\text{ox}} + C_{\text{oi}}} \quad (4.1)
\]

Where: \(C_{\text{ox}}\) Silicon dioxide capacity
Organic insulator capacity

The theoretical capacity for SiO$_2$ ($\varepsilon_{\text{SiO}_2} = 3.9$) devices with 50 [nm] insulator thickness was calculated as 69 [nF/cm2]. While the theoretical capacity for SiO$_2$/BCP ($\varepsilon_{\text{SiO}_2/BCP} = 2.5$) devices with 100[nm] insulator thicknesses was calculated as 28.3 [nF/cm2]. In parallel, we have inspected the insulator capacity of a SiO$_2$/BCP device by evaporating metal contact on the insulator layer and inspecting the capacity by quasi static capacity meter (Agilent 4192A) at frequency of 1[MHz] and 0.1 [V] AC swing at 10 [V] DC voltage. The results gave capacity range from 8[nF/cm2] to 17[nF/cm2]. One of the reasons for the incompatibility could arise from defects in the measurement device contacts. We decided to use the theoretical calculation in order to get more conservative effective mobility result.

4.2.2 C$_{60}$ Organic Semiconductor Evaporation

The C$_{60}$ organic semiconductor was thermally evaporated through a shadow mask on top of the insulator layer. The doped silicon/silicon dioxide substrates (with or without the additional polymer insulator layer) were placed in rotate platform with rectangular mask inside the bell jar evaporator system (EDWARDS, figure 44).

![Figure 44: Schematic of the evaporation chamber. The devices are faced down through stainless mask. The metal or C$_{60}$ sources are placed at the bottom of the evaporation chamber.](image-url)
As the vacuum in the bell jar reached 1-6*10\(^{-7}\) [mBar], we started to evaporate the C\(_{60}\) molecules. The C\(_{60}\) powder, which was placed in ceramic cup below the sample platform, was heated up to the C\(_{60}\) melting point (~550 [C]). Above this temperature the C\(_{60}\) molecules start to evaporate from the powder. The temperature was controlled to result in evaporation rate of 0.05-0.1 [nm/sec], which was monitored with quartz crystal microbalance. The C\(_{60}\) layer was evaporated to 180-200 [nm] thickness. Figure 45 shows the C\(_{60}\) thin layer on doped silicon/silicon dioxide substrate.

\[\text{Figure 45: Doped Si/SiO2 wafer (Grey area) after C}_{60}\text{ thermal evaporation (Green).}\]

4.2.3 Metal Top Contact Evaporation

An interpenetrating structure mask was used to define the lateral source and drain contacts. These structure shapes allow us to achieve high channel width (W) to length (L) ratio. Two masks were used, both with the same channel length of 100 [um]. The first mask with channel width of 25,000 [um], leading to W/L ratio of 250. The second mask with channel width of 3,000 [um], leading to W/L ratio of 30.

After replacement of the shadow mask (used to evaporate the C\(_{60}\)) with the interpenetrating structure mask and placing a metal wire (silver, gold or copper) the platform was evacuated again to 1-6*10\(^{-7}\) [mBar]. After reaching the base pressure the top metal electrodes were evaporated.
Lateral And Vertical Organic Thin Film Transistors

The last stage includes grooving the doped silicon/silicon dioxide substrates at one corner to expose the silicon bulk. By covering this slit with silver paint we created the gate contact point. Figure 46 shows the OTFT with the C_{60} thin layer and the source & drain & gate (silver paint) contacts.

![Figure 46: Two lateral C_{60} OTFT after top metal contact thermal evaporation (Gray).](image)

No photolithographic procedures were involved during the OTFT fabrication. Most of the semiconductor organic materials are sensitive to solvent and polymers used during lithographic process. This fact limit the use of lithographic process only for bottom contacts organic TFT. On the other hand the uses of mask evaporation simplify the fabrication process, but limit the lateral channel dimensions to tens of micrometers.
4.3 Measurements and Characterizations

4.3.1 Measurement techniques

Quantifications of the OTFT performance were done by the current-voltage (IV) characteristics of the conductance and transconductance. The threshold voltage and the mobility values were estimated from these curves. This measurement allows us exact measurement of the drain, source and gate current. The measurements were done with semiconductor parameter analyzer (Agilent 4155B) connected to three Probes heads (KarlSuss PH100, Figure 47) located inside the glove box with a nitrogen atmosphere.

All measurements were done in the dark in order to avoid photo-generation of charges. We used 5 [sec] hold time (the time before the measurement start) and medium sampling rate during the measurement in order to reduce parasitic charging effects.

The thickness and roughness of the prepared layers were inspected using scanning probe micrograph (SPM, Veeco Dimension 3100). The measurements were done in tapping mode. Tapping mode imaging is implemented by oscillating the cantilever.
with nano size tip assembly at or near the cantilever’s resonance frequency using a piezoelectric crystal (figure 48). The oscillating tip is then moved toward the surface until it begins to lightly touch, or “tap” the surface. As the oscillating cantilever begins to intermittently contact the surface, the cantilever oscillation is necessarily reduced due to energy loss caused by the tip contacting the surface. The oscillation amplitude of the tip is measured by the optical detector and input to the SPM controller electronics.

The feedback loop then adjusts the tip-sample separation to maintain constant amplitude. The reduction in oscillation amplitude is used to identify and measure surface features.

Figure 48: Scanning probe micrograph (SPM) at tapping mode. The cantilever’s tip taps at resonance frequency. The reduction in oscillation amplitude is used to identify and measure surface features.
4.4 Lateral OTFT I-V Characterization

Here we will show result for C$_{60}$ TFT with SiO$_2$/organic insulator and silver contacts. The device was fabricated as described in chapter 4.2

4.4.1 $I_{ds} - V_{ds}$ characteristic

First the conductance characteristic was measured. This is done by continuously varying the source-drain voltage ($0[V] < V_{ds} < 12[V]$) for constant gate source voltage. This measurement repeat for different gate-source voltage ($V_{gs} = 0, 2, 4, 6, 8, 10, 12 [V]$). The results appear in figure 49. This figure shows the linear and saturation regions. The linear slope can be seen for low drain-source voltage, where the TFT is in the linear region. For higher drain-source voltage the current start to saturate, where the channel current does not increase with the drain-source voltage.

![Conductance characteristic for C$_{60}$ OTFT with silicon dioxide/block copolymer insulator and silver contacts. Drain-source voltage was swap between 0[V] to 12[V] while gate-source voltage was kept constant. $V_{gs} = 0, 2, 4, 6, 8, 10, 12[V]$. (Tr. A)](image)

Additional information that can be extracted from the conductance characteristic is the contact behaviour. The linear slope from zero drain-source voltage up to
saturation region implies that the contact behaves close enough to an Ohmic contact. Non-ohmic contacts typically show diode shape character (more on that in 4.5). This conductance characteristic, shown in figure 49, is typical to inorganic as well as to high quality organic TFT devices.

By using log-linear conductance graph the “On”/”Off” ratio can be deduced. Figure 50 shows a semi-logarithmic conductance characteristic. By monitoring the gate current we were able to deduce that most of the “Off” current (green dots where \(V_{gs}=0\,[V] \)) was due to bulk conductivity of the C\(_{60}\) film and only very small part of it was due to gate leakage. As gate-source voltage increased the OTFT switches to the “On” state where \(V_{gs} > V_T \) (here \(V_T < 2\,[V] \)). The second conductance line (azure triangle where \(V_{gs} = 2\,[V] \)) was measured when the OTFT was in the “On” state. We note that two volt difference in the gate voltage gave one order of magnitude in the device current (from \(~15\,[nA]\) to \(250\,[nA]\)).

Increasing the gate-source voltage (up to \(12\,[V]\)) added another three order magnitude to the device current (from \(~250\,[nA]\) to \(220\,[\mu A]\)). In general this device holds “On”/”off” ratio of \(10^4\), which is common result compared to other published OTFT results.
4.4.2 I_{ds} - V_{gs} characteristic

Secondly the transconductance characteristic was inspected. Here the gate-source voltage is continuously changed ($0[V] < V_{gs} < 18[V]$) while the drain-source voltage is kept constant. This measurement is repeated for different drain-source voltages ($V_{ds}=2, 6, 10, 14, 18[V]$). The results are shown in figure 51.

Figure 51: Transconductance characteristic for C$_{60}$ OTFT with silicon dioxide/block copolymer insulator and silver contacts. Gate-source voltage was swap between $0[V]$ to $15[V]$ while drain-source voltage was kept constant. $V_{ds} = 2, 6, 10, 14, 18[V]$. A theoretical calculation using equation 3.25 & 3.28 was added (red dots) with threshold voltage $1.7[V]$ and effective mobility of 1.5$[cm^2/Vs]$. Note that an incompatibility can be seen for $V_{gs} >> V_{ds}$ the measured currents are lower then the predicted ones. (Tr. A)

For small gate voltage values the OTFT operates in the saturation region (Where $V_{gs-V_T} < V_{ds}$). In this case the channel current depends only on the gate-source voltage according to equation 3.28, leading to identical current for different drain-source voltage curve. As gate-source voltage increase, the OTFT operation shifts from the saturation to the linear region (where $V_g-V_T> V_{ds}$) in which the channel current depends on the drain-source voltage as well as on the gate-source voltage according to equation 3.25. At the linear region the different curves are separated due to different
Lateral And Vertical Organic Thin Film Transistors

drain-source voltage. A theoretical calculation using equation 3.25 & 3.28 was added (red dots) with threshold voltage 1.75[V] and effective mobility of 1.5[cm²/Vs] to figure 51. From this comparison it is clear to see the fit between the theoretical calculation and the device measurements. While there is good agreement at the saturation region, a deviation starts to appear at the linear region. The incompatibility increases as the device operation moves deeper into the linear region (Vgs>>Vds).

A semi-logarithmic graph (Figure 52) can give brighter picture of the different transconductance regions. After gate-source voltage reaches the threshold limit, the channel start to build up as indicated by the exponential increase of the device current. At certain point, the channel extends all the way from the source to the drain (Where the device moves from saturation region into linear region) and the transfer curves become linear. At this point incompatibility begins to appear between the theoretical and measured curves (noticeable for Vds=2, 6[V] where the device enter to deep linear region).

Figure 52: Logarithmic linear transconductance characteristic for C₆₀ OTFT with silicon dioxide/block copolymer insulator and silver contacts. Drain-source voltage was kept constant at Vds =18[V]. A theoretical calculation using equation 3.25 & 3.28 was added (red dots) with threshold voltage 1.7[V] and effective mobility of 1.5[cm²/Vs]. An incompatibility can be seen for Vgs >> Vds. (Tr. A)
We need to remember that equation 3.25 & 3.28 deals with ideal transistor characteristics, which do not refer to the contact resistance, non constant mobility value and to non constant threshold voltage. If we neglect the last two factors (non constant mobility value and threshold voltage), we can derive the channel and contact resistance by inspecting the variation between the theoretical curve and the measured one.

According to equation 3.29, the device resistance for constant drain-source voltage is:

\[R_{\text{tot}}(V_{gs}) = R_{\text{ch}}(V_{gs}) + R_{\text{con}}(V_{gs}) = \frac{V_{ds}}{I_{ds}(V_{gs})} \]

(4.2)

Where: \(R_{\text{tot}} \) is the transistor total resistance, \(R_{\text{ch}} \) is the channel resistance and \(R_{\text{con}} \) is the contact resistance

We can calculate the channel and total resistance from the fit current and the measurements curve that appears in figure 51. In order to get the contacts resistance we can use the next equation:

\[R_{\text{con}}(V_{gs}) = \frac{V_{ds}}{I_{ds}(V_{gs})} - \frac{V_{ds}}{I_{\text{fit}}(V_{gs})} \]

(4.3)

Where: \(I_{\text{fit}} \) is the transistor current as defined by equation 3.25 & 3.28

Figure 53 shows the result calculation for resistance value versus gate-source voltage (0 < \(V_{gs} \) < 15[V]) and a constant drain-source voltage (\(V_{ds} = 2[\text{V}] \)). The channel (\(R_{\text{ch}} \)) and total (\(R_{\text{tot}} \)) resistance were calculated directly from theoretical and measured data, respectively. The contact resistance (\(R_{\text{con}} \)) was calculated using equation 4.3.
Lateral And Vertical Organic Thin Film Transistors

Figure 53: Contact, channel and total transistor resistance for constant drain-source voltage $V_{ds}=2\, [V]$. While for low gate-source voltage, when the transistor is working in saturation region, the total resistance is affected only by the channel resistance. At higher gate-source voltage the contact resistance scale up with the channel resistance. (Tr. A)

For lower gate source voltage (above the threshold voltage), where the transistor is operating at the saturation region, the total transistor resistance is being influenced only by the channel resistor due to the high resistance of a depletion zone at the channel near the drain contact (chapter 3.4). When the transistor working mode is moving from the saturation region into the linear region the functional form of the channel resistance is moving from exponential decay into linear decay. The channel resistance continue to reduce until it become close to the value of the contact resistance. At this point, the transistor’s total resistance stops to decrease and is being dominated by both resistors. We could inspect the channel and contacts resistance as function of drain-source voltage for constant gate-source. Figure 54 shows the channel, contact and total resistance for $V_{gs}=12\, [V]$ and $V_{ds}=2, 6, 10, 14, 18\, [V]$ that was extracted using equations 4.2 and 4.3.
According to the above information, if we assume that the transistor, which works in deep linear region, is limited by the contact barrier, we could fit Schottky barrier equation to the conductance characteristic. The channel current and the barrier lowering can be fitted by equation 3.25 and 2.19 (With fixed Richardson constant) as:

$$I_{ds} = \frac{e\phi}{kT} \exp\left(\frac{e\Delta\phi}{kT} \sqrt{V_{con}}\right) \left(\frac{(V_{gs} - V_T)\sqrt{V_{ch}} - \frac{V_{ch}^2}{2}}{kT}\right)$$ \hspace{1cm} (4.4)

Where: Schottky barrier lowering $\Delta\phi$ is dependent on the contact potential drop $\sqrt{V_{con}}$, and V_{ch} is the channel lateral potential drop, leading to:

$$V_{ds} = V_{con} + V_{ch}$$ \hspace{1cm} (4.5)

We used the following fitting curve:

$$Y = m_1 \exp(m_2 \sqrt{m_3}) \left[(V_{gs} - V_T)(X - m_3) - \frac{(X - m_3)^2}{2}\right]$$ \hspace{1cm} (4.6)

Where the Schottky barrier lowering $\Delta\phi$ can be extracted by:
Lateral And Vertical Organic Thin Film Transistors

\[\Delta \phi = \left(\frac{kT}{e} \right) m_2 \sqrt{m_3} \]

We have fitted equation 4.6 to one of figure 50 curves (V_{gs} = 12[V] curve, where the device is working in deep linear region). The fit (black dots) appears in figure 55. From these curves we can find the barrier lowering for each point as well as the voltage that drops across the contact. From this fit we could find that the barrier lowering for V_{ds} = 2.5[V] is \(\Delta \phi \sim 0.01[eV] \) and that \(\frac{V_{con}}{V_{ds}} \sim 0.35 \) or that \(V_{con} \sim 0.87V \).

![Figure 55: Fitting equation 4.4 (black dots) and equation 3.25 (blue dotted line) to part of the logarithmic linear conductance characteristic taken from figure 50. The red dotted line is the measured current for V_{gs} = 12[V] and 0.5[V] < V_{ds} < 4[V]. In this region the transistor is working in deep linear zone where the ideal transistor equation 3.25 does not fit well to the measured data. Including Schottky barrier effect improves the fitting parameters. (Tr. A)](image)

According to figure 52 we learned that when the transistor is working in deep linear region the classic linear equation does not fit well. We can observe this phenomenon by fitting equation 3.25, which represent ideal transistor without any contact effects, to figure 55. This fit (blue dotted line) have high variance \(R^2 = 0.968 \). While the black dotted line represent curve fit according to equation 4.6, which include the Schottky barrier lowering, with \(R^2 = 0.999 \) variance.
4.4.3 Threshold Voltage & Effective Mobility

From the conductance characteristic, it was shown that the threshold voltage lay between zero to 2[V]. We used the common method for OTFT threshold voltage extraction. This method includes fitting a linear curve to the square root of the channel current versus gate voltage in the range where $V_{ds} >> V_{gs}$. The linear fit is presented, according to equation 3.28, in figure 56.

![Graph showing linear fit of $I_{ds}^{0.5}$ vs V_{gs}](image)

$y = -0.0026224 + 0.0014914x \quad R = 0.99966$

$V_T = 1.75[V]$

Figure 56: Threshold voltage for C_{60} OTFT with silicon dioxide/block copolymer insulator and silver contacts was defined as $V_T = 1.75[V]$, by fitting linear curve to $I_{ds}^{0.5}$ Vs. I_{gs} transconductance graph where $V_{ds} = 18[V]$ according to equation 3.28. (Tr. A)

According to figure 56, the threshold voltage is equal to $V_T = 1.75[V]$. Extraction of the threshold voltage allows us to calculate the effective OTFT mobility value* using equation 3.35 for linear region. Figure 57 shows the OTFT effective mobility value dependency on the source-drain voltage.

* We define the effective mobility as the value extracted by applying the ideal transistor equation to the measured currents. This would correspond to the true field effect mobility only in the absence of contact barriers or any other problem.
Figure 57: Effective mobility factor dependence on drain-source voltage for C₆₀ OTFT with silicon dioxide/block copolymer insulator and silver contacts. The mobility was calculated using equation 3.35 for linear region. (Tr. A)

The effective mobility is calculated for each drain-source and gate source measurement point. One can see that the effective field effect mobility increase with increasing drain source voltage or with reduction of the gate-source voltage. At both cases the transistor working region is transferred from deep linear region into saturation region. The reason for this phenomenon appears due to the reduction of the contact resistance (barrier) compare to the channel resistance at higher electric fields or at lower gate-source voltage. This phenomenon was shown in figures 53 and 54. In order to get a better picture of the mechanisms involved we used equation 3.35 and 3.36 to calculate linear and saturation effective mobility values as a function of the gate-source voltage. Figures 58 and 59 show the results, respectively.
Figure 58: Effective mobility value dependence on gate-source voltage. The mobility was calculated using equation 3.36 for saturation region. (Tr. A)

Figure 59: Effective mobility value dependence on gate-source voltage. The mobility was calculated using equation 3.35 for linear region. (Tr. A)

Figure 58 shows almost constant saturated effective mobility value of 1.5±0.1 [cm²/Vs]. It is clear that the drain-source voltage has no effect in this, saturation...
region. While the linear effective mobility for small drain-source voltage ($V_{ds} = 2\,[\text{V}]$) (according to figure 59) seem to reduce from $1.6\,[\text{cm}^2/\text{Vs}]$ to $0.77\,[\text{cm}^2/\text{Vs}]$ as a function of V_{gs}. This reduction in the effective mobility value is due to the contact resistance becoming more significant as the channel resistance goes down. When dealing with non ideal contacts, which occur often in organic transistor, we should use the effective mobility parameters extracted from the saturation region in order to get better realistic information regarding the device performance.

<table>
<thead>
<tr>
<th></th>
<th>SiO2/BCP insulator and Silver contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_t,[\text{V}]$</td>
<td>1.72</td>
</tr>
<tr>
<td>Mobility[cm2/Vs]</td>
<td>1.5 ± 0.1</td>
</tr>
</tbody>
</table>

Table 1: Threshold voltage and saturated effective mobility values for silver contacts SiO$_2$/BCP insulator transistor. The mix insulator thickness is 100[nm]. (Tr. A)
4.5 Contact Effect on Threshold Voltage & Effective Mobility

4.5.1 Contact Effect (Ag, Cu, Au)

In this part we investigated the influence of the contact type on the OTFT performance. It is well known that whenever the work function of the metal electrode does not coincide with the conductive band or in our case with the C₆₀ LUMO level an injection barrier with non-ohmic electrical behaviour is formed at the metal semiconductor interface (Chapter 2.8.3). This barrier controls the injection of charges from the source electrode into the semiconductor channel. In addition it should affect the device threshold voltage and the device mobility [97]. For this investigation, we used three different metals as source and drain electrodes: silver, copper and gold, with work function of 4.3[eV], 4.6[eV] [46, 57] or 4.4-5.4[eV] [111, 112], respectively, below vacuum level. The metal work function should reach thermal equilibrium with the C₆₀ semiconductor Fermi level. Because the C₆₀ have intrinsic characteristics the Fermi level lies close to the mid point at the C₆₀ LUMO & HOMO band gap. According to that, the C₆₀ Fermi level placed at 4.87 [eV] below vacuum.

When we evaporated the top metals electrodes on the C₆₀ layer, the semiconductor is slightly doped by the metal until the semiconductor Fermi level matches the metal work function. This situation appears for the silver and the copper, while it almost doesn’t appear for the gold evaporation due to similar energy levels between the gold work function and the C₆₀ Fermi level (Where we define the gold work function as ~4.8[eV]). Figure 60 shows the energy levels of the C₆₀ semiconductor and the work function values of Silver, Copper, and gold electrodes.
4.5.2 $I_{ds} - V_{ds}$ characteristic

The OTFTs were fabricated as described in chapter 4.2. Three substrates passed the same fabricated process up to the source & drain evaporation. At this stage we evaporated one metal type on each device, leading to three devices having three different metal electrodes.

We fabricated several batches similar to these devices. The results for the silver and copper contacts devices repeated themselves, while the gold contacts devices results were not stable. Few of the gold contacts devices gave strong Schottky effect (like the device described here), while others gave results that show nearly ohmic effect behaviour. Explanation appears in chapter 4 summary. The devices were measured in the same manner as described in chapter 4.3.1. Figure 61 shows the results for conductance measurements of silver, copper and gold contacts.
Figure 61: Conductance characteristic for C_{60} OTFT with silicon dioxide and silver (grey, Tr. B), copper (red, Tr. C) or gold (orange, Tr. D) contacts. Drain-source voltage was swapped between 0[V] to 12[V] while gate-source voltage was kept constant at $V_{gs} = 0, 2, 4, 6, 8, 10, 12[V]$.
The conductance characteristics of silver and copper contacts show almost ohmic contacts, while the gold contacts show non-ohmic characteristics. In addition, when the devices are in saturation region (for example, when $V_{ds} > 10[V]$) the channel current for the gold contact device is about 15-20% compared to the silver or copper contacts devices. See figure 62.

![Graph comparing channel current for silver (Ag), copper (Cu), and gold (Au) contacts](image.png)

Figure 62: Comparison between silver (grey, Tr. B), copper (red, Tr. C) or gold (orange, Tr. D) contact devices. Drain-source voltage was swapped between 0[V] to 12[V] for constant gate-source voltage $V_{gs} = 12[V]$. The gold contact device current is about 15-20% compared to silver or copper devices current.

4.5.3 Threshold Voltage & Effective Mobility

According to the procedure described in chapter 4.4.3 we used fit linear function to the channel current root versus gate voltage where $V_{ds} \approx 18[V] >> V_{gs}$. Due to non-ideal gold contacts pattern line we used fit line from higher voltage ($V_{Au(fit)}>5[V]$) compared to the other two contacts devices ($V_{Ag(fit)}>1.5[V]$ and $V_{Cu(fit)}>2.5[V]$).

The results are shown in figure 63.
The silver contacts threshold voltage equal to $V_T=1.06[V]$, the copper contacts threshold voltage equal to $V_T=1.68[V]$ and the gold contacts threshold voltage is $V_T=2.48[V]$. All the V_T fits were done with variance higher than $R^2=0.996$.

![Graph](image)

Figure 63: Threshold voltage for C$_{60}$ OTFT with silicon dioxide insulator and silver (grey, Tr. B), copper (red, Tr. C) or gold (orange, Tr. D) contacts was defined as $V_T=1.06[V]$, $V_T=1.68[V]$, $V_T=2.48[V]$ respectively. The linear curve fit was done to $I_{ds}^{0.5}$ Vs. I_{gs} transconductance graph where $V_{ds}=18[V]$ according to equation 3.28.

From the definition of the threshold voltage we could calculate the OTFT effective mobility versus the contact type. The effective mobility calculation was done in similar manner as described in chapter 4.4.3. Figure 64 shows the saturation regions OTFT effective mobility.
The effective mobility figures for each device show similarity to the mobility figures describe in chapter 4.4.3. A small reduction in the effective mobility can be seen for silver and copper contact devices. As expected, the gold contact effective mobility is significantly lower compared to silver or copper contact devices. This can be explained by the higher barrier existing at the interface between the gold source electrode and the C_{60} semiconductor. On the other hand, according to the work function model we expected that the silver contact device would show better effective mobility compare to the copper device. Summary of the threshold voltage and efficiency mobilities values are shown in the next table.

<table>
<thead>
<tr>
<th></th>
<th>Silver contacts</th>
<th>Copper contacts</th>
<th>Gold contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_T[V]</td>
<td>1.06</td>
<td>1.68</td>
<td>2.48</td>
</tr>
<tr>
<td>Mobility[cm2/Vs]</td>
<td>0.37±0.08</td>
<td>0.4±0.07</td>
<td>0.06±0.013</td>
</tr>
</tbody>
</table>

Table 2: Threshold voltage and saturated effective mobility values for silver (Tr. B), copper (Tr. C) and gold (Tr. D) contacts SiO$_2$ insulator transistor. The insulator thickness is 50[nm]
4.6 scanning probe micrograph (SEM) images

One of the reasons for the superior performance of the block copolymer insulated device compared to the SiO\textsubscript{2} insulated device could be related to the \textit{C}_{60} film morphology growth in the channel during the evaporation process. \textit{C}_{60} crystal grains increases due to better order influence by insulator layer means better order OTFT channel morphology, and could enhanced the device performance. For Pentacene OTFT there is direct correlation between the semiconductor grains size to the device performance [21, 24, 73, 77, 80b], while in \textit{C}_{60} OTFT Kobayashi et al [65] tried to inspect the coronation between \textit{C}_{60} grain size (by controlling the substrate temperature during the evaporation stage) and the device performance. No correlation was found.

To check the different \textit{C}_{60} film morphology evaporated on block copolymer or SiO\textsubscript{2} we used scanning probe micrograph working in tapping mode. Figures 65 and 66 show the scan thickness and phase images results for Si/SiO\textsubscript{2}/block-copolymer and Si/SiO\textsubscript{2} substrate evaporated with \textasciitilde10[\text{nm}] \textit{C}_{60} thin films, respectively. The scan size was 1[\text{um}]. Both devices gave more or less the same film morphology, with average grain size of 100[\text{nm}]. There is no evidence for larger or rigidity \textit{C}_{60} grains size for the block copolymer model.
Figure 65: SPM scan for Si/SiO₂/block-copolymer/ C₆₀ (~10[nm]). Left: Roughness image, Right: Phase image.

Figure 66: SPM scan for Si/SiO₂/ C₆₀ (~10[nm]). No variation in grain size or rigidity compare with figure 65.
The C$_{60}$ lateral OTFT presented in this chapter showed good similarity to the ideal transistor theoretical formulas using Schottky effect barrier correction. We showed that for the saturation region, where the contact resistance are much lower compare to the channel resistance, we could use the ideal transistor theoretical formulas. However, as the transistor operating conditions are changed towards the linear region, where the contacts resistance aren’t negligible any more, we need to take in to account the effect of the contacts. This is essential for non ohmic contacts.

Threshold voltage and effective mobilities values were extracted using only the ideal transistor formulas. For our best knowledge the block copolymer insulator C$_{60}$ OTFT results (shown in part 4.4.3) are the best performance C$_{60}$ OTFT ever published. The effective mobility is three times larger compare to the best publish C$_{60}$ OTFT [65, 67]. These effective mobility and threshold voltage put the N type C$_{60}$ OTFT in the same performance level as amorphous silicon TFT or Pentacene OTFT.

Block copolymer insulator C$_{60}$ OTFT effective mobility was three times larger compare to silicon dioxide insulator. The device mobility increase can be explained by reducing trap states or/and better ordering of the C$_{60}$ molecules in the semiconductor channel. In part 4.6 we tried to show relations between the superior performance devices and the C$_{60}$ thin layer grains sizes. Larger grains size will cause better order in each grain domains and reduce the charge carrier scattering at the grains boundaries between the contacts. According to SPM scan there wasn’t any morphology difference between the better performance block copolymer insulated device compare with the SiO$_2$ insulated device. It could be that the differences are confined to the channel surface and require farther investigations.

Silver and copper contacts C$_{60}$ OTFT gave better performance compared to gold contacts devices. Most of the published C$_{60}$ OTFT devices used gold contacts, which lower the device performance due to high source contact barrier. By suitable choice of metal which forms a lower Schottky energy barrier, like silver or copper, the transistor performance was improved. We tried to show direct relationship between
the device contact barrier and the device mobility and threshold voltage according to the work function model. This relationship wasn’t clear enough. We have fabricated several batches with silver, copper and gold contacts. The results for the silver or copper contacts devices were reproducible, while the gold contacts devices results vary from strong Schottky parameters, like the transistor presents here, up to almost ohmic parameters. In addition, according to the work function model, we expected to get better device result using silver contacts compared to copper contacts. But both contacts devices performance were similar. The reason for that can be attributed to various factors, including the built in stress in the semiconductor due to the metal evaporation, causing damage to the organic film ordering and increasing the interface traps states, other influence could rise due to interpenetration of the metal inside the active layer, influencing the interface dipole parameters.

The effective devices mobility increases with increasing drain-source voltage. This phenomenon can be explained by source contact barrier reduction, due to stronger source drain electric field. On the other hand, when the device is working in linear region the effective mobility decreases as the gate-source voltage increases. This happened due to the increased influence of the contact on the total resistance. We showed that as we entered deeper into the linear region the channel resistance reduce to minimum, in this region the contact resistance become more dominant and the total device conductivity do not increase as excepted, leading to deviation from the ideal curve as can be seen in figure 51.

<table>
<thead>
<tr>
<th>Tr.</th>
<th>Ins. Type</th>
<th>Contact Type</th>
<th>Tox [nm]</th>
<th>Vt [V]</th>
<th>Mobility [cm²/Vs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SiO₂/BCP</td>
<td>Ag</td>
<td>100</td>
<td>1.72</td>
<td>1.5+-0.1</td>
</tr>
<tr>
<td>B</td>
<td>SiO₂</td>
<td>Ag</td>
<td>50</td>
<td>1.06</td>
<td>0.37+-0.08</td>
</tr>
<tr>
<td>C</td>
<td>SiO₂</td>
<td>Cu</td>
<td>50</td>
<td>1.68</td>
<td>0.4+-0.07</td>
</tr>
<tr>
<td>D</td>
<td>SiO₂</td>
<td>Au</td>
<td>50</td>
<td>2.48</td>
<td>0.06+-0.013</td>
</tr>
</tbody>
</table>

Table 3: Summary of lateral transistors shown in this thesis.
Lateral And Vertical Organic Thin Film Transistors
This chapter discusses the benefit of vertical OTFT compared to lateral OTFT and relevant published contributions by other groups are presented. The basic theory for the operation of our new structure, PS-OVTFT, and background on the technology that utilize block co-polymer is discussed.
5.2 Vertical OTFT

5.2.1 Benefit of Vertical TFT

The organic TFT performances are still poor compared to inorganic devices. Most of the efforts are still focused on the traditional lateral TFT structure. Among the efforts we can find approaches that try to reduce the contacts resistance or the trapping states of the insulator-semiconductor interface. Other common directions include efforts to increase the dielectric constant of the gate dielectrics or reduce the channel length [80-84].

In the margins of the OTFT research few academic groups are trying different approaches by using vertical shape OTFT, in which the channel length is defined by the thickness of the organic layer and not by the high resolution photo lithography process needed for lateral OTFT. Apart from the fabrication price reduction, these devices should have enhanced DC performance and better switching speed. In the following pages we will describe five reports of attempts to boost the OTFT performance by utilizing a vertical structure.

The common feature of all the reported device structures is that the source and drain are vertically stacked and are separated by the thickness of the semi-conducting or the insulating organic layer. The differences are in the location of the semiconductor layer and of the gate electrode.

5.2.2 Vertical OTFT in literature

Stutzmann et. al. produced self-aligned Vertical channel polymer FET [30] which is similar to the V-groove FET [57]. The unique fabrication procedure in that paper is the use of solid state embossing to produce the device. Embossing is non lithographic patterning technique capable of imprinting nano scale patterns into polymer thin layer. The process was done with micro cutting tool having sharp wedges that could penetrate into a multilayer of metals contacts and semiconductor film.
First, they fabricated a tri-layer structure consisting of a polymer insulator layer bounded between two electrode layers (figure 67a). These layers were evaporated or spin coated on a PET substrate. Secondly, they pressed the emboss mold forming a V shape inside the tri-layer structure (figure 67b). Finally, they coated the V shape channel with polymer semiconductor, polymer gate insulator and gate electrode (figure 67c). The channel length was defined by the insulator layer thickness (between 700 to 1200 [nm]).

F8T2 polymer semiconductor was used as the active layer. The mobility extract for this device gave $2-3 \times 10^{-3} \text{ cm}^2/\text{Vs}$, which is similar to mobility extract from lateral F8T2 TFT. On the other hand, the conductance characteristics (figure 68) include linear relationship between the drain-source voltages to the channel current, and lack the typical lateral structure saturation zone.
Lateral And Vertical Organic Thin Film Transistors

Figure 68: Conductance characteristics for F8T2 self-aligned vertical channel polymer FET [30] L=900[um], W~500[um]; inset: F8T2 chemical structure.

The Schottky barrier between the source contact and the F8T2 HOMO Level (F8T2_HOMO~5.5[eV] compare to Au work function~4.8[eV]) limited the injected current and the device performance. By replacing the active polymer to P3HT (P3HT_HOMO~4.9[eV]) the contact resistance was reduced to minimum and the mobility factor was enhanced to 1*10^{-2} [cm^2/Vs]. Figure 69 shows the P3HT device conductance characteristics. The relatively high off currents (when Vg=0) are attributed by the authors to unintentional P3HT doping.

Figure 69: Conductance characteristics for P3HT self-aligned vertical channel polymer FET [30] L=900[um], W~500[um]; inset: P3HT chemical structure.

R. Parashkov et. al. organic vertical channel transistor structure [86] is similar to Stutzmann et. al device. This group used excimer laser in order to define the source and drain contact pattern (figure 70).
Figure 70: Parashkov Vertical-channel [86] fabrication process: (a) Drain electrode deposition; (b) insulating layer deposition; (c) source electrode deposition; (d) formation of the vertical channel by excimer laser ablation through Cu mask; (e) schematic of the vertical channel; W-channel width, L-channel length.

Channel length was estimated to be 2.3 [um], dictated by the thickness of the PVP insulator layer. This thickness was necessary because of the high average roughness of the gold contacts and the need to get an insulated layer free of pinholes. After the definition of the source & drain contacts a Pentacene active organic layer was evaporated following by gate insulator layer coated and casting of PEDOT/PSS stripe as gate electrode (not seen in figure 70). Figure 71 shows the vertical OTFT characteristics for PEDOT/PSS contacts (a, b) and for gold contacts (c, d). The mobility was estimated to be 3.42×10^{-3} [cm2/Vs] and 1×10^{-3}[cm2/Vs] for PEDOT/PSS and gold contacts, respectively.

Figure 71: Parashkov Vertical-channel Conductance and transconductance characteristics [86] for: a-b) Conductive polymer source-drain electrodes; c-d) Gold source-drain electrodes.
The third structure, K. Kudo group’s static induction transistor (SIT) [31-32, 87] is based on an inorganic thyristor structure [88] proposed in 1975. The roots for this structure go even further to 1904 and are based on the electric vacuum tube principle patent by John Ambrose Fleming. The SIT is based on combination of organic diode with Schottky gate electrode. Kudo et. al. used copper phthalocyanine (CuPc) film as an active layer. CuPc make an ohmic contact with the Au source & drain electrodes, and form a Schottky barrier contact with the Al gate electrode. Figure 72 shows the SIT structure, CuPc chemical structure and the device top & side view. SIT side profile expose (fig 72) the gate electrode striped shape. Much of Kudo group’s efforts are invested in patterning this shape. Still this structure cause fabrication difficulty and limit the current modulation.

![Figure 72: Kudo et. al. Static induction transistor (SIT) structure [87]: a) SIT structure; b) CuPc chemical structure; c) SIT upper and side view](image)

In this device the injected carriers from the source flow toward the drain region through the potential barrier near the gate stripes electrodes. The carriers flow is controlled by the potential barrier height depending on the gate voltage. Figure 73 shows the SIT potential diagram. Increasing the gate electrode potential creates a barrier and reduces the charge carrier flow between the source and drain electrodes.
As seen before, the conductance characteristic (figure 74) shows diode characteristics controlled by the gate field effect. The channel current reduces as the gate potential increase, and no current saturation appears. The mobility extracted from this device [87] is still low (4*10^{-6} [cm^2/Vs]). The author claims for low leakage current smaller than 10^{-8} [A] when Vg<0.8 [V]. At this dynamic range (0[V]<Vg<1[V]) the On/Off ratio is lower than 10.

Nakayama et. al. charge injection controlled transistor (CICT) [89, 90] has similar structure to SIT structure but includes flat gate electrode. According to Nakayama the CICT mechanism is based on hot electrons, where the emitter current flows through the base electrode to the collector electrode, and is modulated by base voltage. This structure is similar to the metal base transistor (MBT) used in in-organic electronics. Figure 75 shows the CICT structure and the measurement circuit. C_{60} and N’-
dimethyl-3,4,9,10-perylene tetracarboxylic diimide (Me-PTC) organic semiconductors gave the best performance for this structure.

Figure 75: Nakayama et. al. charge injection controlled transistor (CICT) [90] structure include the measurements circuits

Increase of the base potential will cause the base and collector currents to rise. Figure 76 shows the collector current and the current amplification factor (hFE), define as the ratio between the output (collector) current to the input (base) current.

Figure 76: CICT: a) Collector current Vs. Collector Voltage, b) Current amplification factor (hFE), define as the ratio between the output (collector) current to the input (base) current under different base voltage [90].

The last structure is, Liping Ma et. al. gate-source-drain vertical organic field effect transistor (VOFET) [33]. Like SIT this structure includes horizontal active layer and gate electrode. But here the gate electrode is placed below the source electrode. The authors define this structure as active cell on top of a capacitor cell. Figure 77 shows the schematic diagram of the VOFET.
Ma et. al. state two important conditions needed for operation of the VOFET device:

1. Thin and rough common source electrode.
2. High capacitance for the bottom capacitor cell.

The common source electrode is formed from evaporating of 20[nm] copper and 10[nm] aluminium. Figure 77 right shows AFM image of the common source electrode, which emphasize the roughness of this layer. The model described in the paper defines that electric field produced by the bottom charged capacitor cell is not totally shielded at the source/organic interface due to the rough interface and net charges at the surface. This electric field inducted negative charge on the top surface of the source electrode, as well as, positive charge in the organic layer, near the source/organic interface result in lowering the barrier height (figure 78) between the source and the organic layer.

Figure 78: VOFET band diagram as describe by Ma et. al [33]: a) without gate voltage; b) With positive gate voltage
Lateral And Vertical Organic Thin Film Transistors

Ma et. al. device impressive performance include 10[mA] channel current at $V_{ds} = 4[V]$ and $V_{gs} = 5[V]$ with On/Off ratio close to 4×10^6. Figure 79 shows the conductance characteristics for this device.

![Figure 79: VOFET [33] conductance characteristics for difference gate-source voltage](image)

The channel current is sufficient to drive an organic light-emitting diode (OLED). Figure 80 shows a 1000 cd/m² bright OLED driven by this VOFET.

![Figure 80: OLED driven by the VOFET device [33]. The OLED and the VOFET circuit appear in the inset. When the gate-source voltage is 0[V] then most of the 8[V] fall on the high resistance active cell. When the gate-source voltage is 4[V] the active cell resistance drops to 3[V], allowing light emission from the OLED cell.](image)
5.3 Patterned Source Vertical Organic Thin Film Transistor

5.3.1 Block Co Polymers (BCP)

The ability to obtain two or three dimensions nano scale self-assembly patterns makes block copolymer a candidate to various applications. The block copolymer provides access to scales that are not available to traditional lithographic techniques, and can be considered as nano lithographic masks. These patterns have inspired a variety of new applications as nano filters for fuel cells, structured blocks for memory stack capacitors [91-93], solid electrolyte batteries, membrane for drug delivery, and structured blocks for optoelectronic devices.

An interesting use of the block copolymer concept is to better mix N type and P type organics semiconductor materials. These boundaries boost the separation process of electrons and holes in photovoltaic cells. On the contrary, it could boost the efficiency of the recombination sites in a light emitting diode. In one of the interesting works done in the science of integration between block copolymer and organic semiconductor, Hadziioannou et al. demonstrated [94-96] the formation of photovoltaic cells made from electron donating (PPV) and electron accepting (C₆₀) block copolymers. The PPV-b-P(S-stat-C₆₀MS) diblock copolymer synthesis by Hadziioannou group for the photovoltaic cell appears in figure 81.

![Chemical structure for donor-acceptor diblock copolymer PPV-b-P(S-stat-C₆₀MS) synthesis by Hadziioannou group for the photovoltaic cell [94].](image)

A block copolymer consists of two or more polymeric chains (blocks), which are covalently attached to each other. When the constituent polymers are
incompatible, phase separation will take place, leading to segregation of the different blocks to distinct domains (phases) [98]. The covalent bond between the blocks prevents phase separation on a macroscopic scale, thus the phase separation process leads to materials that feature nano-scale periodic morphologies. Moreover, the tendency of phase-separated systems to minimize the interfacial energy leads in block copolymers to the formation of lamellae, cylinders, and spheres depending on the relative volumes (f_i) of the blocks [99, 100]. When the volume fraction of block A (f_A) is small, the resulting structure is of spheres made of block A surrounded by block B material. As the volume ratio of block A (f_A) increases towards ratio of 0.5, cylinders in a hexagonal lattice (figure 82: C cubic), bicontinuous double gyroid (figure 82: G cubic), and finally lamellae (figure 82: L cubic) structures are formed respectively. When the ratio (f_A) is above 0.5 a mirror structure appears, in these structures block A become the dominant material (figure 82: G’, C’, S’ cubic).

Figure 82: Structural 3D pattern of block copolymer [100]: a) Theoretical phase diagram predicted by self-consistent meanfield theory; b) Experimentally phase diagram; c) Block copolymer geometries as a function of relative lengths of the two blocks.

The patterns assumed by the block copolymers are influenced by the boundary conditions as well the films interface or thickness. Work done by R. Magerle et al.[102] shows the effect of film thickness on the copolymer structure. Figures 83 a, b are SPM images, taken in phase mode, of a thin poly(styrene-b-butadiene-b-styrene) tri-block copolymer film as a function of its thickness. Figure 83c shows the
schematic profile of a & b images, and figure 83d gives a simulation image of the block copolymer structure.

Figure 83: Block copolymer boundary conditions influence by film thickness [102]; a-b) Phase SPM images of a thin poly (styrene-b-butadiene-b-styrene) triblock copolymer which reconstructs as a function of film thickness.; c) Schematic height profile of the phase images; d) Simulation of the block copolymer.
5.3.2 PS-VOTFT Structure

The structure we propose to use is patterned source vertical OTFT (PS-VOTFT) which looks similar to the one used in Liping Ma VOFET device [33]. The main obstacle in constructing this structure is the possible shielding of semiconductor film from the gate voltage by the source electrode. The solution that we chose for this problem was the use of a grid like source electrode, which will allow the gate field flux pass through the grid at the regions which are not covered by metal. As we will see below, this unique choice of electrode makes the device operation very different to that reported by Ma et. al. [33].

In our structure the field flux should attract charge carrier from the source metal to the exposed regions at the semiconductor-insulator interface in a manner very similar to that of filling the channel in a lateral OFET. Since the choice of metal is such that there is barrier to charge injection into the semiconductor, such injection will be accompanied by bending of the semiconductor HOMO & LUMO levels. The current injection from the source metal thus is being controlled by the level bending, which is adjusted by the gate electrode potential.

When dealing with film layers measured at the tens of nanometer scale, we need to understand that the grid segment should be shorter then the semiconductor layer thickness. For our best knowledge, block copolymer is the only simple technique that enables nano scale two dimension patterns. The main problem was to find way to
Lateral And Vertical Organic Thin Film Transistors

transfer the block copolymer pattern into conductive metal electrode that will be used as the source electrode. An article published at Nature magazine [103] by Lopes & Jaeger unroll us the path for patterning nano scale conductive metal surface using block copolymer film.

5.3.3 Patterned Source electrode

5.3.3.1 BCP Pattern

The idea behind Pattern Source contact used in our PS-VOTFT device was to use bottom up method in which the block copolymer layer guide a metal source layer. This technique is based on work done by W. A. Lopes and H. M. Jaeger [103, 104]. The technique is based on the different wetting properties of the block copolymer materials, and the use of these properties to guide diffusing metal atoms to aggregate selectively. This process produce highly organized metal nanostructure.

We used asymmetric polystyrene-block-polymethylmethacrylate (PS-b-PMMA) that formed parallel cylindrical domains PMMA blocks surrounded by PS blocks with repeat spacing of 40-50 [nm]. Mansky et al. showed [105-108] that a PS–PMMA block copolymer could be attached to the substrate surface and would induce perpendicularly lamellar-forming structures. In this case, smooth films are observed only when the original, spun-cast film thickness matches a natural thickness of NL, where N is an integer number, and L is the bulk repeat spacing. Figure 85 shows transmission electron microscopy (TEM) image of the PS-b-PMMA block copolymer layer [103] with repeat spacing of 50 [nm] . Simulation of the thin layer cross section, at the bottom right side of figure 85, illustrates the nano-structure alignment of the two polymers: PS (dark) and PMMA (light)
Figure 85: 84K PS-b-PMMA Block copolymer transmission electron microscopy (TEM) [103]; inset image include large image showing the repeat spacing, L=50[nm], which corresponding to the film thickness. The lower image shows the polymer nano-structure alignment of the two polymers, PS (dark) and PMMA (light)

To get this block copolymer structure we first spin coated the asymmetric PS-b-PMMA diblock copolymer in toluene onto the doped silicon/silicon dioxide substrate. The second step includes annealing above the copolymer glass temperature, which allows a phase separation between the copolymer blocks (as shows in figure 85). This annealing not only removes solvents and minimizes surface-induced non-equilibrium effects, but also allows the copolymer to reach its thermodynamic equilibrium morphology.

5.3.3.2 Source Contact Evaporation

Lopes and Jaeger [103, 104] obtained metal patterned by block copolymer thin layer for gold, indium, tin, lead and bismuth. All the above metals were patterned by the block copolymer to form nano particles with thickness up to 3 [nm], while silver was found to form continuous conducting nano wires at thicker layers above 10 [nm]. We used patterned silver based on this technique to form the Source contact for the PS-VOTFT devices.
The technique includes thermal evaporating of metal atoms onto the copolymer layer. In the case of silver, the silver atoms were diffuse \([109, 110]\) above the copolymer layer preferring the PS domains. Very high mobility contrast between the two copolymer domains, force the silver atoms to clear one domain (the PMMA domain) and aggregate on the other (the PS domain) before surface tension stabilizes the aggregate structure.
5.4 Work function model

Interpretation of the PS-VOTFT model by the work function model can be seen in the next figures. Figure 87 shows the C_{60} work function as reported by N. Hayashi et. al. [46]. The LUMO & HOMO levels are located at 3.57 [eV] and 6.17 [eV] below the vacuum level, respectively. Because of the intrinsic nature of the organic materials we have define the C_{60} Fermi level location at the mid point between the LUMO & HOMO Levels (i.e. $E_{F_{C60}}=4.87$[eV]). The work function of silver is located at about 4.3 [eV] [57].

Figure 87: Work function model for separated silver and C_{60}; Left: C_{60} LUMO & HOMO levels are 3.57[eV] and 6.17[eV] [46] below the vacuum level, silver work function is 4.3[eV] below vacuum level [57]; Right: structure of the separated silver electrodes and C_{60} semiconductor. A-B defines the cut curve through the model.

Figure 88 shows the Fermi level adjustment between the metal work function and the C_{60} semiconductor Fermi level. In order to establish this Fermi adjustment a net charge from the metal is injected to the semiconductor, formatting shift in the vacuum level with dipole layer right at the interface [46]. In equilibrium state, a potential barrier at the size of few hundreds millivolts exist between the silver contacts and the C_{60} semiconductor.
Applying positive drain-source voltage will cause the drain contact potential to shift down by eV_{ds}. This will cause a levels bending inside the semiconductor as appear in figures 89. Yet, the potential barrier near the source contact will prevent injection of negative charge into the C_{60} semiconductor.

When the gate electrode is bias positively compare to the source electrode, a negative charge will be induced at the insulator-semiconductor interface in the regions that are not covered by the source metal. This negative charge is accompanied by additional levels bending near the source contact, and effectively reduces the barrier between the source contact and the C_{60} LUMO level. When this barrier is sufficiently
small a significant current will be injected into the semiconductor. This defines the threshold voltage point. Any additional gate voltage should enhance the levels bending, reduce the injection barrier and amplify the current injected to the interface from the source metal. Figure 90 shows the negative charges near the source electrode inducted by the positive charges in the gate electrode, and the LUMO level bending cause by it.

Figure 90: Work function model after applying gate voltage; Upper left: C_{60} LUMO & HOMO levels bend near the source electrode due to the charge induced by the gate. These bend lower the barrier and allow negative charge to inject to the C_{60} LUMO level; Right: structure of the silver electrodes and C_{60} semiconductor with gate & drain voltage. This schematics show the charges induced in the C_{60} near the source electrode and the negative charge current flows from the source to the drain (Electric current is from the drain to the source). A-B defines the cut curve through the model; Bottom left: Zoom in of metal semiconductor interface showing the Schottky effective barrier lowering (green) due to gate electric field. The barrier lowering increases the negative charge injection into the semiconductor.
5.5 Two dimension Poisson’s equation simulation

In order to investigate the potential across the source-insulator layer, a two dimension Poisson’s equation simulation was done*. The simulation includes Gate electrode that is placed at Y=0 (Y is the depth dimension). The insulator layer thickness is 100 [nm]. According to that the source electrode are placed at Y=100 and are 25[nm] wide with 25[nm] space separation. In this simulation the source electrode thickness is 0[nm]. A 200 [nm] bulk representing the semiconductor is placed between Y=100 to Y=300. The Drain electrode is placed at Y=300. Figure 91 shows the potential image when the gate-source voltage is $V_{gs} =0[V]$ and the drain-source voltage is $V_{ds} =5[V]$. The boundary conditions are such that at any metal interface (gate, source-grid or drain) the potential is set by the metal. At the right and left boundaries we set $\frac{\partial V}{\partial x} = 0$.

![Image of potential simulation](image)

Figure 91: PS-VOTFT Poisson’s equation simulation with $V_{gs} =0[V]$ and $V_{ds} =5[V]$. The Gate electrode placed at Y=0, the source electrode is placed at Y=100 and 150<X<175 and 200<X<225 and the drain electrode placed at Y=300. The simulation show the potential drop between the drain and the source electrodes, and a small potential lift off between the source electrodes.

Examination of the source and the semiconductor-insulator stripe (where Y=100) shows [figure 92] that the potential at this layer increase up to 0.17[V] between the

* The Poisson’s equation simulations were done by Prof. Nir Tessler
well define zero potential source electrode, and the electric field near the source-semiconductor interface is equal to $6 \times 10^5 \,[\text{V/cm}]$.

![Potential and electric field across the source layer (Y=0) when Vg=0[V]: left: potential level Vs. X position showing the potential lift-off between the source electrodes; right: Electric field Vs. X position showing the strength and the direction of the field.]

When the gate voltage is being enlarged to $V_{gs}=5\,[\text{V}]$ the potential across the semiconductor-insulator stripe is increased as well, this can be seen at figure 93 and figure 94. Figure 94 shows that the potential at the semiconductor-insulator layer ($Y=100$) increase up to 0.5[V], and that the electric field near the source-semiconductor interface increase to $2 \times 10^6\,[\text{V/cm}]$.

![PS-VOTFT Poisson’s equation simulation with $V_{gs}=5\,[\text{V}]$ and $V_{ds}=5\,[\text{V}]$. The simulation show the potential drop across the insulator layer (0$<Y<$100) and across the semiconductor layer (100$<Y<$300). Larger potential lift off appears between the source electrodes.]

Figure 94: Potential and electric field across the source layer (Y=0) when Vg=5[V]; Left: potential level Vs. X position showing larger potential lift off between the source electrodes; Right: Electric field Vs. X position showing the strong field compare to the case when Vg=0[V].

Poisson’s equation shows that the gate voltage can influence the potential position of the source-semiconductor interface. This potential value should change the charge density near the source electrode, and by that will control the current injected through the source electrode into the semiconductor layer. Figure 95 shows the potential across enlarged device images with Vgs =0[V] or Vgs =5[V], respectively, while Vds=5[V].

Figure 95: PS-VOTFT Poisson’s equation simulation with Vds =5[V] and; Left: Vgs =0[V] where small potential lift off appears between the source electrodes; Right: Vgs =5[V] where larger potential lift off appears between the source electrodes.
5.6 Equivalent circuit

PS-VOTFT equivalent circuit is shown in figure 96. It includes four regions:

1. Source semiconductor contact region- Schottky diode (D_s).
2. Pseudo channel at the insulator interface.
3. Channel region- serial resistor (R_c).
4. Semiconductor drain contact region- ohmic contact (D_d).

In this equivalent circuit we neglected any parasitic capacity and insulator leakage.

By controlling the charge density near the source electrode, or in other words, by controlling the potential value of diode D_s anode electrode (V_c) we can control the current injected through diode D_s to the semiconductor. By charging up capacitor C_i, the gate-source voltage controls the potential value of point V_c, near the source electrode. The current injection into the semiconductor is inversely proportional to the potential drop across the diode ΔV_{D_s}:

$$I(V_{gs}) \sim \exp\left(\frac{-\Delta V_{D_s}V_{gs}}{kT}\right) \sim \exp\left(\frac{-\phi_{gs}V_{gs}}{kT}\right)$$ \hspace{1cm} (5.1)

A well define Schottky source contacts are essential in order to fabricate PS-VOFET device. In addition, a good ohmic drain contact and high bulk conductivity organic semiconductor will improve the device performance. In this device the gate potential should control the current flow between the drain contacts to the source.
contact (while the electron direction is between the source electrode to the drain electrode).

5.7 Schottky Contact Effect

According to equation 1.19 the reverse saturation current injection into the semiconductor is:

\[J_0 = A^* T^2 \exp\left(-\frac{e\phi_{B0}}{kT}\right) \exp\left(\frac{e\Delta\phi}{kT}\right) \]

Formula 1.19 shows that the injected current is defined by the energy barrier \(\phi_{B0} \), between the source metal electrode and the semiconductor band. This current injection can be controlled by the Schottky barrier lowering \(\Delta\phi \) cause by the image force and electric field induced on the interface. By reducing Schottky barrier (or increasing of \(\Delta\phi \)) the injected current could be increased exponential. We adopt this theory to explain the gate field effect influence on the current injected into the semiconductor layer. In our model \(\Delta\phi \) include two parts. The first part depends on drain-source voltage, while the second one leans on gate-source voltage. This relation is shown in the next equation:

\[I \sim A^* T^2 \exp\left(-\frac{e\phi_{B0}}{kT}\right)\exp\left(\frac{e\phi(V_{ds})}{kT}\right)\exp\left(\frac{e\phi(V_{gs})}{kT}\right) \]

(5.2)
Lateral And Vertical Organic Thin Film Transistors
6. **VERTICAL PS-OTFT PROCESSING & CHARACTERIZATION**

6.1 **introduction**

This chapter discusses the fabrication process of vertical PS-OTFT. It deals with the nano patterning of the source electrode and the deposited steps of this device. It shows the characterize current-voltage measurements. In this chapter we are demonstrating the idea of PS-OVTFT, and the effect of the gate field on the drain-source current. Future work is needed to be done in order to improve the performances of this device, to a level that can reach its full potential.
6.2 Device processing

6.2.1 Block Co-Polymer layer

The source electrode patterning was produced as described in chapter 5.3.3. The block copolymer (BCP) layer was spin coated from an asymmetric PS-b-PMMA (PS Mw=68K – PMMA Mw=38K) di-block copolymer solute in toluene (1% weight) onto the silicon/silicon dioxide substrate. The substrate was rotated at a speed of 2000[RPM] in order to get the desired layer thickness. The spinner speed should be matched to the BCP concentration in order to get film layer thickness equal to the BCP repeat spacing. In our case the BCP film was controlled to be 45-50[nm] matching to the film periodicity. The spin cast process was followed by a 12 hours 250[°C] annealing step in vacuum. Annealing above the BCP glass temperature allows phase separation while equilibrium conditions has been achieved. The images reveal after the annealing process [figure 97] show clear separation between the PS blocks and the PMMA blocks leading to a 10-20[nm] cylinders in a hexagonal lattice structures. We used this technique to create surface energy patterned films. In addition, the BCP layer also serves as an insulator layer in parallel to the silicon dioxide layer.

Figure 97: A scanning probe micrograph imaging of PS-b-PMMA block copolymer template after annealing at 250[°C] for 12 hours; Left: roughness image; Right: Phase image showing PS domains (Dark) and PMMA domains (Bright); Inset: 2D Fourier Transform showing periodicity of ~47[nm].

Figure 97 shows the block copolymer template of roughness and phase scanning by SPM working in tapping mode. The left figure shows the BCP roughness with Z
dynamic range limited to 2[nm], this figure show that the average thickness is lower than 2[nm], which was obtained only for film thickness matching to the film periodicity. The right figure shows the phase separation between the PS domains (Dark lines) and the PMMA domains (bright lines). The inset picture shows the 2D Fourier Transform of the phase image showing clear periodical circle of 47 [nm].

6.2.2 Metal Source Evaporation

Thermal evaporation of metal atoms onto block copolymer film results in preferential segregation of the metal atoms on top of one type of the block copolymer domains, forming a metal islands or a grid type electrode. The amount of the evaporated metal dictates the morphology and conductivity of the resulting layer. The metal source evaporation process is the critical stage of the PS-VOTFT fabrication process. The thickness and the pattern of the source electrode will influence on the working condition of the device. Lower metal thickness reduces the electrode connectivity up to a point that the layer becomes insulated. Higher metal layer thickness will reduce the pattern follow-up of the metal, and by that, will reduce the metal-semiconductor-insulator interface area. Reducing of the interface area will reduce the device efficacy up to a point that the field effect is lower than the noise level (leakage current).

Much effort was done to inspect the layer thickness. We first try to monitor the layer thickness by the quartz crystal microbalance placed in the vacuum chamber. But due to the instability of this monitor, most of the evaporated samples gave non conductive layer (meaning that the aggregates metals are still isolated) or highly conductive layer (meaning that most of the source electrode is cover with metal layer, reducing the effective interface area). After few months of calibration effort we started to use new mask that includes flexible contacts between the mask window. This mask allows us to get real time conductive measurement, and improve our control over the evaporation source layer characteristics.
In this thesis we used only silver for the source electrode. We tried to evaporate copper as well, but in spite of our effort we didn’t succeed in getting well pattern copper layer above the BCP substrate. More research is needed in order to get other metal type pattern by BCP layer. We evaporated silver onto the doped silicon/silicon dioxide substrate coated with PS-b-PMMA block copolymer layer. This process was done immediately after the block copolymer layer annealing step with minimum possible exposure time to ambient atmosphere. The evaporating rate was the minimum rate possible by the evaporator monitor system.

Figure 98 shows scanning electron micrograph (SEM) image of nano-scale metal particles network that reflect the underlying block copolymer thin film. The particles are 30-40 [nm] wide which are bounded by the Polystyrene cylinder dimensions. This figure was obtained by evaporating a smaller amount of metal (~ 10 [nm]) onto the polymer film, resulting in non conductive silver layer.

An additional silver evaporation will result in aggregation of the silver particles into conductive metal grid. This grid still mimics the block copolymer pattern beneath it. The image in Figure 99 shows a scanning electron micrograph image of ~ 20 [nm] thick silver conductive grids. Most of our efforts during the pattern source electrode evaporation were concentrated in controlling the structure of the electrode, aiming to retain large area free of metal grid while ending with conductive thick metal layer.
6.2.3 C$_{60}$ Organic Semiconductor Evaporation

The C$_{60}$ organic semiconductor was thermally evaporated through a shadow mask on top of the substrate with the source electrode. The substrates were placed in a rotate platform with rectangular mask inside the bell jar evaporator. As the vacuum in the bell jar has reached 1-6*10$^{-7}$ [mBar], we started to evaporate the C$_{60}$. The C$_{60}$ powder, which was placed in a ceramic cup below the device platform, was heated up to the C$_{60}$ melting point (~550 [C]). The temperature was controlled to result in evaporation rate of 0.05-0.1 [nm/sec], which was monitored with quartz crystal microbalance. The C$_{60}$ layer was evaporated to 200-400 [nm] thickness.

6.2.4 Metal Top Contact Evaporation

After evaporation of the C$_{60}$ layer the devices were taken out of the vacuum in order to replace the shadow mask to match for the drain electrode. The devices with the mask were placed again in the bell jar for the last evaporation process. The platform was evacuated again to 1-6*10$^{-7}$ [mBar]. After reaching this pressure the top metal electrodes were evaporated. We have used two metal types, silver or gold, as drain electrode. The overlapping area between the top electrode and the bottom source...
electrodes is $S_{s}=3.8e^{-3}[cm^2]$. The top electrode was cut near the cross section with the source electrode boundary in order to conceal any current leakage. The last stage includes grooving the silicon/silicon dioxide and covering this slit with silver paint to create gate contact point with the doped silicon. Figure 100 shows PS-VOTFT structure.

![PS-VOTFT image. In this image the silver pattern source (Yellow stripe), C_{60} (Green) layer, silver (Grey) drain electrodes and (white) silver point contact to the gate electrode can be seen. The PS-VOTFT device was test after the drain electrode was cut across the pattern source stripe to reduce any current leakage.](image)

6.2.5 Buffer lithium fluoride (LIF) layer Evaporation

One of the options that we inspected was using a wide band gap material like lithium fluoride (LIF) as buffer thin dialectic layer between the source contact and the active semiconductor layer. Lithium fluoride is insulator material with 12 [eV] band-gap [101], well behind the conductive band of C_{60} or silver metal work function. We evaporated few devices with 1-5[nm] thick LIF layers. This dialectic layers should buffer between the active semiconductor layer and the metal contact. This buffer layer should prevent chemical reaction at the interface between the C_{60} and the silver metal and by that increase the Schottky effect. We needed to evaporate thin LIF layer in order to allow the mobile charges to tunnel through the dialectic layer, but still keep minimum thickness in order to get uniform layer without pinholes.

When we tried to evaporate few nanometer LIF layer we almost didn’t observed any changes in the device performance, meaning that the LIF layer doesn’t cover most of the source electrode. While higher evaporated layer have lead to devices with high
turn-on voltage and without any field effect phenomenon. More study is needed in order to find the best dialectic material and the preferred thickness in order to increase the PS-VOTFT performance.
6.3 PS-VOTFT I-V Characterization

6.3.1 I- V_{ds}

The following measurements were done on PS-VOTFT with gold drain electrode. First of all, PS-VOTFT structure is assembled from vertical Schottky diode placed on gate electrode insulator. Figure 101 shows the PS-VOTFT current-voltage characterization with zero gate-source voltage. The received characterizations resemble non ideal diode with reverse saturation current due to electron injection from the Schottky barrier source electrode into the semiconductor (figure 101 where V_{d}=0[V]).

![Figure 101: I-V semi-logarithmic curve showing exponential current between the source and drain electrode while gate electrode was unconnected. This curve represents non ideal diode with positive voltage reverse saturation current. A fit curve according to equation 6.1 Show poor fitting result with variance value R^2=0.968. From this fit we found that the barrier height is 0.75[eV] and the barrier lowering at V_{ds}=5[V] is about 0.07[eV].](image-url)
Lateral And Vertical Organic Thin Film Transistors

To find the barrier height we have used the following fit function according to reverse saturation current equation 2.19:

\[Y = m_1 \exp(m_2 \sqrt{X}) \] \hspace{1cm} (6.1)

Where:

\[m_1 = A \cdot T^2 \cdot S \cdot \exp\left(-\frac{e\phi_0}{kT}\right) \] \hspace{1cm} (6.2)

\[m_2(\sqrt{V_d}) = \frac{\phi(\sqrt{V_d})}{kT/e} \] \hspace{1cm} (6.3)

Despite the low correlation between the data and the fit equation we can get rough figures for the source Schottky contact parameters. From this data we found that the barrier height (We used room temperature thermal voltage kT=0.0259[eV], and Richardson effective constant for free electrons 120[A/T²cm²]) is 0.75[eV] and the barrier lowering at V_{ds} =5[V] is about 0.07[eV]. The 0.75 [eV] value is with a very large error bar due to the bad fit and the unknown Richardson constant for organic materials.

By applying electric field between the gate and the source electrodes we have controlled the Schottky diode conductance curve as shown in figure 102. The conductance measurements shows field effect, where the channel current was increased by raising the gate-source potential. In this figure the drain-source voltage is continuously changing (0[V]< V_{ds} <10[V]) for constant gate source voltage. This measurement is repeated for different gate-source voltage (V_{gs} =0, 2, 4, 6, 8 [V]). A negative current leakage from the drain electrode that become larger for higher gate-source voltage, prevented us from continue increasing gate-source potential.
Lateral And Vertical Organic Thin Film Transistors

Figure 102: Conductance characteristic for PS-VOTFT device. Drain-source voltage was swapped between 0[V] to 10[V] while gate-source voltage was kept constant at $V_{gs} = 0, 2, 4, 6, 8$[V]. Weak field effect phenomenon is shown, where current increases with gate-source voltage. This graph shows the source and drain currents in order to identical charging or leaking region, that appears mostly at low gate-source voltage due to leakage current between the gate to the drain. We believe that these leakage currents located around the drain electrode and source stripe boundary (where the drain electrode was cut).

Semi-logarithmic conductance characteristic graph reveals the field effect influence for different drain-source and gate-source voltage. The effect of the source-drain and gate voltages may very likely follow equation 5.2:

$$I \sim A T^2 \exp\left(-\frac{e \phi_{B0}}{kT}\right) \exp\left(\frac{e \phi(V_{ds})}{kT}\right) \exp\left(\frac{e \phi(V_{gr})}{kT}\right)$$

(5.2)

This motivates us to use the following fit equation for figure 104:

$$Y = m_1 \exp(m_2 \sqrt{X})$$

(6.4)

Where m_1 depends on V_{gs} only and m_2 on V_{ds} only.
Examine figure 103 we suggest that current leakage from the source electrode is the primary cause for the weak fit for lower drain-source. \(m_1 \) and \(m_2 \) results parameters appear in table 3. According to these results the gate source dependent coefficient \((m_1) \) is enhanced by a factor of 360, while the drain-source depended term hardly changes (decreases by a factor of 2) for different gate source voltage.

\[
Y = m_1 \cdot \exp(m_2 \cdot x^{0.5})
\]

<table>
<thead>
<tr>
<th>(V_{gs})</th>
<th>(m_1)</th>
<th>Error</th>
<th>(m_2)</th>
<th>Error</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0[V]</td>
<td>1.65e-11</td>
<td>±9.28e-13</td>
<td>4.03</td>
<td>±0.018</td>
<td>0.998</td>
</tr>
<tr>
<td>2[V]</td>
<td>1.07e-10</td>
<td>±5.26e-12</td>
<td>3.51</td>
<td>±0.016</td>
<td>0.998</td>
</tr>
<tr>
<td>4[V]</td>
<td>2.9e-10</td>
<td>±1.32e-11</td>
<td>3.22</td>
<td>±0.015</td>
<td>0.998</td>
</tr>
<tr>
<td>6[V]</td>
<td>1.3e-9</td>
<td>±7.72e-11</td>
<td>2.74</td>
<td>±0.019</td>
<td>0.996</td>
</tr>
<tr>
<td>8[V]</td>
<td>5.8e-9</td>
<td>±3.97e-10</td>
<td>2.3</td>
<td>±0.023</td>
<td>0.992</td>
</tr>
</tbody>
</table>

Table 4: \(m_1 \) and \(m_2 \) result from figure 103, according to equation 6.4. According to this fit \(m_1 \) coefficient increases and \(m_2 \) coefficient decrease as gate source voltage is been rise.
6.3.2 I-Vgs

In order to inspect the influence of the gate-source potential we measured the transconductance curve for constant drain-source voltage ($V_{ds} = 5[V]$) and varying gate-source voltage. We have define the channel current during increasing gate-source voltage (red and blue lines in figure 104) and during decreasing gate-source voltage (green and black lines in figure 104). From figure 104 it is clear to understand that this device suffer from charging phenomenon. In this case the channel current during reduction of the gate-source voltage didn’t reach the initial value. This charging effect vanishes after few minutes when the power to the device is cut-out.

![Figure 104: PS-VOTFT transconductance characteristic. Drain-source voltage was kept constant at $V_{ds} = 5[V]$ while gate-source voltage was swap forward between 0->8[V] (red and blue lines represent source and drain currents) and backward between 8->0[V] (green and black lines represent source and drain currents). This curve show the charging phenomenon appears in this device.](image)

When plotting the data in figure 104 on a logarithmic scale (figure 105) a linear line appears suggesting an exponential dependence. We can fit the data using the next equation:

$$Y = m_1 \exp(m_2 X)$$

(6.9)

Where: m_1 and m_2 are constants.
Figure 105 shows the exponential fit done to transconductance graph with constant drain-source voltage \(V_{ds} = 5\,[\text{V}] \) and increasing gate-source voltage \(0\,[\text{V}] < V_{gs} < 8\,[\text{V}] \). We can attribute \(m_1 \) to the source-drain leakage current and \(m_2 \) to the effective barrier height reduction. Our data again shows weak barrier height lowering by 0.05\,[\text{eV}] as the gate-source voltage is equal to 8\,[\text{V}] and a large leakage current that deteriorates the On/Off ratio.

\[
y = 1.9155 \times 10^{-7} \times e^{0.23632x} \quad R = 0.99987
\]

Figure 105: A semi logarithmic fit to the PS-VOTFT transconductance exponential current where drain source voltage was kept constant at \(V_{ds} = 5\,[\text{V}] \). From this fit we can extract the Schottky barrier lowering due to the gate field effect. According to this fit the barrier is lowered by 0.01 \,[\text{eV}].
6.4 Summary

Our results are still far from showing good performance PS-VOTFT devices. First of all a good Schottky barrier is needed between the source electrode and the semiconductor in order to reduce to minimum the “off” leakage current and increase the On/Off ratio of such device. According to the working function model silver and C$_{60}$ interface should create a barrier to electron injection from the metal into the semiconductor. At reverse voltage this barrier should keep low leakage current up to breakdown voltage. Our results have showed a high leakage current and non ideal Schottky interface between the silver electrode and the semiconductor. In spite of that, we continue to use silver for the pattern source electrode. The reasons for that are due to the enormous research time needed to calibrate the metal evaporation process in order to get electrode that fit the need for PS-VOTFT. Our research with PS-b-PMMA block copolymer has result with good silver electrode. Inspection of other metal types for pattern source electrode, that could create better Schottky contact with C$_{60}$, gave poor results due to less mimics properties of these metals. The reasons for that, according to our understanding, result from surface tension properties compatibility between the metal and the block copolymer [103, 104].

Our measurements have shown weak barrier lowering. The reasons, in our opinion, appear due to low source-insulator-semiconductor area and non ideal Schottky interface existing in the measured device.
7. SUMMARY & FUTURE WORK

7.1 Summary

This thesis work was intended to increase organic transistors performance. During this work, we decided to focus on one of the interesting and promising organic semiconductor in use today, C$_{60}$ molecule. C$_{60}$ in spite of strong sensitivity to oxygen is promising candidate for photovoltaic [40] and transistor application. Its properties that allow good electron mobility increase its appeals for organic logic circuits where complementary transistors are needed.

We first inspected lateral C$_{60}$ TFT with different insulator materials, and different metal contacts types. Compared with most of the published C$_{60}$ OTFT devices, that use silicon dioxide insulator layer and gold contact, Our devices using block copolymer insulator and silver contact have shown superior performance with mobilities up to 2 [cm2/Vs] and threshold voltage below 1[V]. Our results are well above the best C$_{60}$ OTFT results reported in literature (mobility~0.5[cm2/Vs]) [65, 67], and are among the best N-type organic transistors known in publication. These performances are comparable to amorphous silicon (a-Si:H) TFT devices performances, that are commercially used as drivers for liquid-crystal displays.

Most of our research time was invested in fabrication of the novel pattern source vertical OTFT structure. Vertical organic transistors should solve one of the main problems of organic transistors. By using vertical channel and scaling down the channel length to nano-meter level this device architecture should increase the poor performance related to organic transistors. But vertical architectures contain drawbacks which deal mainly with the problem of placing the gate electrode. We decided to fabricate device with bottom gate electrode and patterned grid source electrode. The integration with block copolymer allowed us to create this device with nano-scale source electrode grid. During the thesis work we confronted with processing problems, which at first observation look elementarily for fabricated. But, few elementarily stages have “drawn” long months before we could continue to the
next stage. Our results are still far from fulfilling the potential existing in PS-VOTFT devices. Much work still needed in order to find the best combination between the source metal electrode and the organic semiconductor.

7.2 Future Work

During this thesis we used C$_{60}$ and silver source contact pattern by PS-b-PMMA BCP in order to produce PS-VOTFT. In order to improve the PS-VOTFT performance there is a need for proper metal and organic semiconductor that will form ideal Schottky barrier. In order to reach this ideal properties the manufacturing equipment, especially the evaporator, should prevent any contamination penetrates into the device organic film during the evaporation or other process. Contamination could increase leakage current and by that reduce the effective Schottky barrier. The organic semiconductor should contains high bulk connectivity in order to reduce the over all device resistance. Uses of very thin insulator layer between the source electrodes and the semiconductor could increase the barrier effect due to better separation between the semiconductor layer and the contact layer. And what’s equally important, the block copolymer should meet the need to pattern the source electrode by proper surfaces tension that will cause rejection of the metal particles from one BCP domain to the other one.

Proper design and inspection of different metal and organic semiconductor will lead to PS-VOTFT with capability to drive high current organic flat displays.
8. REFERENCE

Lateral And Vertical Organic Thin Film Transistors

50. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and
Lateral And Vertical Organic Thin Film Transistors

Carbon Nanotubes (Academic, San Diego, 1996)

52. N. F. Mott, Canadian J. Phys. 34, 1356(1956).
57. S. M. Sze; Physics of Semiconductor Devices (John Wiley & Sons, 1981)
Lateral And Vertical Organic Thin Film Transistors

Lateral And Vertical Organic Thin Film Transistors